منتديات المُنى والأرب

منتديات المُنى والأرب (http://www.arabna312.com//index.php)
-   الشؤون الأمنية والعسكرية (http://www.arabna312.com//forumdisplay.php?f=167)
-   -   معلومات عن الـطــائـرة (http://www.arabna312.com//showthread.php?t=11832)

الغراب الأسود 20 - 11 - 2010 02:21 AM

معلومات عن الـطــائـرة
 
معلومات عن الـطــائـرة

http://www.centennialofflight.gov/es...lane/TH2G2.jpg


الـطــائـرة

الطائـرة أحدث وأسرع وسائل النقل، حيث لا يتفوق عليها في السرعة سوى المركبات الفضائية. وتستطيع طائرة النقل أو طائرة السفر الجوي النفاثة الحديثة، أن تقل حمولة ثقيلة من الركاب والبضائع لتعبر بهم أجواء القارة الأوروبية في أقل من خمس ساعات. كذلك فهي تستطيع أن تطير نصف المسافة حول العالم من لندن إلى سيدني في أقل من 24 ساعة. ويمكن للمسافرين التمتع بالسفر المريح عند ارتفاعات تتراوح بين 9,000 و13,000م فوق سطح الأرض. كما يستطيع المسافرون مشاهدة فيلم سينمائي أو الاستماع إلى المقطوعات الموسيقية وخلافها. وتتسع الطائرة النفاثة الضخمة لحمل نحو 500 راكب.

تطير الطائرات الصاروخية ـ وهي الطائرات الأكثر سرعة ـ بسرعات تزيد على 7,240كم/ساعة، وتُستخدم أساسًا في إجراء البحوث.

وليست كل الطائرات في ضخامة وقوة الطائرات النفاثة أو الصاروخية. فكثير منها مزود بمحرك واحد، ويحمل عددًا قليلاً من الركاب. وتُستخدم الطائرات الخفيفة للرحلات القصيرة والرحلات الترفيهية الخاصة برجال الأعمال.

والطائرة مركبة أثقل من الهواء. فأضخم طائرات النقل تزن ما يزيد على 320 طنًّا متريًّا عند تحميلها بالكامل. وتتمكن الطائرة من الطيران بفعل محركاتها وأجنحتها، وكذلك أسطح التحكم فيها. ويقوم المحرك (أو المحركات) بدفع الطائرة إلى الأمام مخترقة الهواء الجوي. ويتسبب اندفاع الطائرة في تحرك الهواء الذي يسري فوق السطح العلوي للجناح بسرعة متزايدة مما يؤدي إلى انخفاض ضغطه، مقارنة بضغط الهواء عند السطح السفلي للجناح. ويحافظ فرق الضغط هذا، والذي يطلق عليه قوة الرفع، على استمرار تحليق الطائرة في الهواء. ويستطيع الطيار المحافظة على اتزان الطائرة أثناء الطيران بالضبط المتواصل لأسطح التحكم وهي أجزاء متحركة في كل من الجناح والذيل.

وتُسمى الأنشطة الخاصة بعمليات تصميم وتركيب الطائرات بعلم الطيران. وفي أواخر القرن الثامن عشر الميلادي استُخدمت البالونات في المحاولات الأولى للطيران في الجو. وتطير البالونات نظرًا لأن وزنها أخف من وزن الهواء. وعقب المحاولات الأولى لطيران البالونات، حاول المخترعون ابتكار آلة أثقل من الهواء تتمكن من التحليق والطيران. وقد حاول بعضهم إجراء التجارب على الطائرات الشراعية (طائرات دون دفع آلي). وعند دراستهم لأجنحة الطيور لاحظ المبتكرون أنها محدبة، لذلك فقد تمكنوا من جعل طائراتهم الشراعية تطير مئات الأمتار بتزويدها بأجنحة محدبة بدلاً من الأجنحة المستوية. وخلال القرن التاسع عشر، استطاع المبتكرون تصنيع أول محرك احتراق داخلي لتوليد القدرة اللازمة للطيران.

وأخيرًا، وفي 17 ديسمبر عام 1903م، تمكن الأخوان الأمريكيان ـ أورفيل وويلبر رايت ـ اللذان كانا يعملان في صناعة الدراجات من تصنيع أول طائرة تطير في التاريخ. وقاما بهذا العمل قرب بلدة كيتي هوك، بولاية كارولينا الشمالية الأمريكية. واستأثر أورفيل بالطلعة الأولى، قطع خلالها مسافة 37م بطائرته المصنوعة من الأخشاب والأسلاك وقطع القماش. وبعد نجاح الأخويْن رايت، استمر المخترعون والطيارون في العمل المتواصل لتحسين تصميم الطائرة. وفي كل عام تقريبًا، كانت تطير طائرات أكثر سرعة، ولمسافات أكثر بعدًا مقارنة بالطائرات التي سبقتها في العام المنصرم. وفي ثلاثينيات القرن العشرين بدأت الطائرات المصنعة من المعدن، وأحادية السطح (أي ذات الجناح الواحد) تحل محل الطائرات الخشبية، وثنائية السطح (أي ذات الجناحين) والمغطاة بقطع القماش.

وكان اختراع المحركات النفاثة في خلال الثلاثينيات من القرن العشرين مصدرًا لتزويد الطائرات بوحدات دفع ذات قدرات عالية. وخلال الحرب العالمية الثانية (1939- 1945م) استمر تقدم العمل في تطوير الطائرات، حيث استخدم الجيل الأخير من المقاتلات المروحية، باكورة المقاتلات النفاثة، وكذلك القاذفات الثقيلة طويلة المدى. وفي بداية الخمسينيات من القرن العشرين بدأت طائرات السفر الجوي في رحلات يومية لعبور المحيط الأطلسي دون توقف. ومع نهاية خمسينيات القرن العشرين أصبحت طائرات الركاب النفاثة تؤدي دورًا مهمًا في تقريب جميع الدول مما جعل الانتقال فيما بينها ميسرًا، وبدا العالم أصغر كثيرًا مما كان قبل ذلك بقرن من الزمان.

وجلبت الطائرات معها تغيُّرات عديدة في أسلوب حياة الناس. فملايين البشر يعتمدون على الطائرة لتحقق لهم انتقالاً مريحًا. أما رجال الأعمال فيتوقعون خدمات بريدية سريعة، كما تقوم العديد من المصانع بتصدير منتجاتها عن طريق الجو. وتقدم الطائرة خدماتها للبشرية بطرق أخرى عديدة تتراوح بين مكافحة حرائق الغابات وحمل المساعدات في حالات الطوارئ. كذلك فإن الطائرة سلاح أساسي في القتال.

وتتتبع هذه المقالة مراحل تطور الطائرة، وتشرح ملامح الطائرة الحديثة. كذلك تناقش المقالة الأجزاء المكوِّنة للطائرة، ودور كل منها في مساعدة الطائرة على الطيران بالإضافة إلى ذلك تشرح المقالة كيف يقود الطيار الطائرة، وطريقة بناء الطائرات.

تاريخ وتطور الطائرة
ظل الناس يحلمون آلاف السنين بالطيران. بل لقد حاول بعضهم الطيران بتثبيت ريش الطيور على الذراعين ورفرفتهما كأجنحة الطير. إلا أن الغالبية كانت تعتقد أن الطيران فوق الإمكانات البشرية العادية. أخبرت الكثير من الروايات عن الناس الصالحين الذين يمكنهم الطيران، أو الذين حُملوا عبر الهواء بوساطة حيوانات مجنحة. وروى قدماء اليونانيين قصة مخترع يدعى ديدالوس وابنه إيكاروس كانا قد طارا في الهواء بأجنحة من الريش والشمع. ولما اقترب إيكاروس كثيرًا من قرص الشمس تسببت حرارتها في انصهار أجنحته، وسقط في مياه البحر وغرق.

تواريخ مهمة في مراحل تطور الطائرة
1500م وضع الفنان المبتكر الإيطالي ليوناردو دافينشي رسوماته لآلة طائرة ذات أجنحة رفرافة.
1783م حقق الفرنسيان جان ف. بيلاتر دي روزييه، والماركيز دآرلاند أول ارتفاع في الجو في بالون أخف من الهواء مستخدمين الهواء الساخن لذلك.
1804م أطلق السير جورج كايلي البريطاني أول نموذج لطائرة شراعية بنجاح.
1843م وضع وليم س. هنسون، المبتكر البريطاني تصميمات لطائرة تدفع آليا بمحرك بخاري تتضمن العديد من الأجزاء الرئيسية للطائرة الحديثة.
1848م بنى جون سترنجفيللو، البريطاني، نموذجًا مصغرا مُعتمدًا على تصميمات طائرة هنسون، وتم إطلاق هذه الطائرة، ولكنها لم تبق في الجو إلا فترة قصيرة.
1891- 1896م أصبح أوتُّو ليلينتال، الألماني، أول من قاد بنجاح طائرة شراعية في الجو.
1896م أطلق صمويل ب. لانجلي، الأمريكي، نموذجًا لطائرة تدفع آليا بمحرك بخاري.
1903م قام الأخوان أورفيل وويلبر رايت الأمريكيان بأول طلعة طيران بطائرة أثقل من الهواء، تدفع آليا، قرب بلدة كيتي هوك بالولايات المتحدة الأمريكية. وقطعت الطائرة في طلعتها الأولى مسافة 37م، وبقيت في الجو زمنًا قدره 12 ثانية
1906م تمكن تراجان فولا، المبتكر الروماني، من بناء أول طائرة بحجم كامل وجناح مفرد، لكنها لم تقدرعلى الطيران.
1909م أصبح الفرنسي لويس بليريو أول شخص يطير عبر القناة الإنجليزية.
1913م قام إيجور أ. سيكورسكي، المبتكر الروسي، ببناء وقيادة أول طائرة ذات أربعة محركات.
1915م أول طيران لطـائرة مصـنعة بالكامل مـن المعـدن، وذات جناح كابولي، صنعت في ألمانيا تحت اسم يونكرز ج ـ 1
1924م أجري اختبار جوي في ألمانيا ـ لأول طائرة مصنعة بالكامل من المعدن ـ ومزودة بثلاثة محركات طراز يونكرز ج ـ 23.
1927م قامت طائرة النقل الشهيرة لوكهيد فيجا، ذات المحرك الواحد بـأول رحلة لها.
1930م قام المهندس البريطاني، فرانك ويتل، بوضع تصميمات لأفكاره بشأن محرك نفاث.
1936م دخلت طائرة النقل دوجلاس دي.سي ـ 3 الخدمة على الخطوط الجوية بالولايات المتحدة الأمريكية. وأصبحت هذه الطائرة الأكثر استخداما في تاريخ الخطوط الجوية.
1939م تم في ألمانيا بنجاح، أول طيران لطائرة ذات محرك نفاث.
1947م قام تشارلز ييجر، نقيب طيار بالقوات الجوية الأمريكية بأول طلعة طيران يتخطى خلالها سرعة الصوت بالطائرة الصاروخية بيل إكس ـ 1
1952م بدأت الطائرة ديهافيلاندكوميت، أول طائرة خطوط جوية نفاثة ضخمة، بالخدمة.
1953م بدأت أول طائرة نقل مروحية، فيكرز فيسكونت، الخدمة في خطوط جوية منظمة.
1953م أصبحت الطائرة الأمريكية ف ـ 100 سوبر سابر أول مقاتلة نفاثة عاملة.
1958م بدأت الطائرة بوينج 707 في العمل وكانت أول طائرة نقل تعمل بين الولايات المتحدة الأمريكية وأوروبا.
1960م كانت الطائرة البريطانية هوكر ب ـ 1127 أول طائرة ذات محرك مفرد تقلع وتحط عموديا.
1968م قام الطيارون الروس باختبار أول طائرة نقل في العالم تتخطى سرعة الصوت، وهي الطائرة تي يو 144.
1970م بدأت خدمات طائرة الجامبو النفاثة بوينج 747.
1976م دخلت الطائرة كونكورد في خدمة المسافرين. وهي طائرة نقل تتخطى سرعة الصوت اشترك في تصنيعها كل من بريطانيا وفرنسا.
1995م دشنت الطائرة بوينج 777 لخدمة المسافرين. وهي أكبر طائرة نفاثة في العالم ثنائية المحركات.
2000م توقفت طائرة الكونكورد عن الطيران إلى حين معرفة أسباب الشروخ التي ظهرت على جسمها.


المحاولات والأفكار الأولى.
نحو عام 400ق.م، صنع عالم يوناني يدعى أرشيتاس حمامة خشبية تتحرك في الهواء. ولم يعرف للآن كيف استطاع أرشيتاس أن يجعل هذه الحمامة تطير. ويُعتقد أنه قام بربط هذا الطائر بذراع دوار، واستخدم بخارًا أو غازًا لتحريكه في اتجاه دوراني. وفيما بين 400 ق.م¬ ـ 300ق.م، اكتشف الصينيون طريقة تصنيع الطائرة الورقية، وهي شكل من أشكال الطائرات الشراعية. وبعد فترة استخدمت الطائرات الورقية لحمل أشخاص في الهواء.
وخلال القرن الثالث قبل الميلاد، قام العالم الرياضي والمبتكر الكبير، اليوناني الجنسية أرخميدس، باكتشاف سبب طفو الأجسام وكيفيته. وفي عام 880م، قام عباس ابن فرناس (العربي الأندلسي المتوفى عام 887م) بمحاولة للطيران بعد أن صنع لنفسه جناحين من الريش، ولكنه فشل في محاولته. وفي نحو عام 1290م، سجل راهب إنجليزي يدعى روجر بيكون، أن الهواء ـ مثله مثل الماء ـ يحتوي على جسيمات صلبة واستنتج بيكون، بعد أن درس أفكار أرخميدس، أنه إذا أمكن بناء النوع الصحيح من المركبات، فسوف يرفعها الهواء كما يرفع الماء السفن. وفي نحو عام 1500م، رسم الفنان والمبتكر الإيطالي ليوناردو دافينشي جهاز الأورنيثوبتر، وهي طائرة ذات جناحين خفاقين كأجنحة الطيور. وفي عام 1680م، أثبت العالم الرياضي الإيطالي جيوفاني بوريللي، استحالة أن يطير الإنسان عن طريق رفرفة الأجنحة. فقد أثبت بوريللي أن عضلات جسم الإنسان أضعف من أن تتمكن من تحريك الأسطح الكبيرة المطلوبة لرفع وزنه في الهواء.

طيران الإنسان لأول مرة.
في عام 1783م، استطاع فرنسيان، أحدهما طبيب يدعى جان ف.بيلاتر دي روزييه، والثاني يدعى الماركيز دي أرلاند، تنفيذ أول طيران للإنسان داخل آلة مخترعة. فقد تمكنا من الطيران لمسافة تزيد على 8كم فوق مدينة باريس في بالون كتاني كبير. وقام بتصنيع هذا البالون فرنسيان يعملان في مهنة تصنيع الورق هما الأخوان جاك وجوزيف منتجولفير، وتم ملء المنطاد بالهواء الساخن الناتج عن حرق بعض الخشب والقش، وهو ما رفعهما في الجو.
قام الأخوان منتجولفير بتصنيع مناطيد ناجحة أخرى، وأصبح طيران هذه البالونات حافزًا لمبتكرين آخرين، فبدأوا في استخدام غاز الهيدروجين ـ وهو غاز أخف من الهواء ـ لرفع بالوناتهم في الهواء. وكان التحكم في البالونات وتوجيهها صعبًا للغاية، لكن المبتكرين استمروا في إجراء تجاربهم عليها حتى استطاعوا في منتصف القرن التاسع عشر ابتكار المنطاد (السفينة الهوائية). وقد زُوِدّ المنطاد بمحركات ومراوح، فأصبح أسلس قيادة من البالون، الذي كان من غير الممكن التحكم في خط سيره.
وفي هذه الفترة، حوَّل بعض المبتكرين انتباههم نحو الطائرات الشراعية، التي هي أثقل من الهواء. ففي عام 1804م، قام السير جورج كايلي ـ وهو مبتكر بريطاني ـ ببناء أول طائرة شراعية ناجحة. ولم تكن سوى طائرة صغيرة تطير دون ركاب. وقام كايلي بعد ذلك ببناء طائرة شراعية ناجحة بحجم كامل، وقد حملت إحدى هذه الطائرات سائق عربته مرغمًا عبر واد صغير.

وقد أسس كايلي أيضًا علم الديناميكا الهوائية لدراسة تأثير سريان الهواء حول الأجسام ـ وربما كان هو أول من وصف الطائرة على أنها ذات محرك وجناح ثابت ـ وأنها تندفع في الهواء بوساطة المراوح الأمامية.
وفيما بين عامي 1891و 1896م، استطاع أوتّو ليلينتال الألماني إجراء أول طيران شراعي ناجح يحمل راكبًا يتولى بالفعل قيادة الطائرة. وقبل نهاية القرن التاسع عشر قام مبتكرون آخرون، من بينهم بيرسي بيلتشر البريطاني، و أوكتيف تشانيوت الأمريكي، بطلعات شبيهة. وقد بنيت بعض هذه الطائرات الشراعية الأولى بصورة جيدة، حتى إنها حملت طياريها مئات الأمتار في الهواء. لكن قيادة الطائرات الشراعية كان في معظم الأحوال أمرًا عسيرًا، بالإضافة إلى أنها لم تكن مصممة لحمل الركاب أو البضائع، فلم تكن لذلك وسيلة عملية من وسائل النقل.

الطيران بالدفع الآلي.
في عام 1843م، وضع وليم س هنسون، المبتكر البريطاني، تصميمًا لأول طائرة مزودة بمحرك ومراوح أمامية وأجنحة ثابتة. لكنه أوقف مشروعه، بعد فشل أول نموذج قام ببنائه. وقام صديقه جون سترنجفيللو عام 1848م، ببناء نموذج مصغر لطائرة مستخدمًا نفس تصميم هنسون، وتم إطلاق هذا النموذج بالفعل بنجاح لكنه لم يبقَ في الجو إلا فترة قصيرة. وفي عام 1890م، حاول المهندس الفرنسي كلمنت آدر الإقلاع بطائرة تُدفع آليًا بمحرك بخاري صنعه بنفسه، ولكنه لم يستطع السيطرة عليها، ومن ثَم لم تحلق في الهواء. وفي نفس الفترة تقريبًا قام السير هيرام ماكسيم الأمريكي ـ الذي أصبح فيما بعد مواطنًا بريطانيًا ـ بصنع طائرة ضخمة تدفع بمحرك بخاري، وكانت الطائرة مزودة بجناحين ومحركين ومروحتين أماميتين. واختبر ماكسيم طائرته عام 1894م، حيث ارتفعت لمدة قصيرة عن سطح الأرض، ولكنها لم تتمكن فعليًا من الطيران.
كذلك قام مواطن أسترالي، وآخر من نيوزيلندا، بالعمل منفردين وبمعزل عما يحدث في باقي أرجاء العالم، ويعتبران رائدين في إجراء التجارب على الطائرات الأثقل من الهواء. فالأسترالي، لورنس هارجريف قد صنَّع أسطحًا ذات أشكال انسيابية لاستخدامها في تصنيع الأجنحة التي تولد قوة الرفع. كذلك أنتج مراوح أمامية ومحركات طائرات تستند إلى نظرية المحركات الدوارة. وفي عام 1894م، وأثناء هبوب رياح بالقرب من شاطئ البحر جنوبيّ سيدني، تمكن هارجريف من رفع نفسه مسافة 5م فوق سطح الأرض، مستخدمًا طائرة ورقية ذات صندوق ثلاثي. وعمت أفكار هارجريف، واستخدمها الكثيرون في الطائرات الأولى. فعلى سبيل المثال، كانت الطائرة الأوروبية تشبه كثيرًا الطائرة الورقية الصندوقية. بل إن هناك شواهد تؤكد الرأي القائل: إن رواد الطيران الأوائل الأخوين رايت ـ قد استخدما بعض أفكاره.
وخلال التسعينيات من القرن التاسع عشر، قام العالم الأمريكي، صمويل ب.لانجلي، ببناء نموذج طائرة ذات دفع آلي بخاري. أطلق لانجلي على طائرته اسم إيرودروم. وفي عام 1896م، طارت هذه الطائرة مسافة 800م في زمن قدره دقيقة ونصف. وبنى لانجلي بعد ذلك طائرة ذات حجم كامل مستخدمًا محركات احتراق داخلي. وحاول أحد الطيارين الإقلاع بهذه الطائرة مرتين في 7 أكتوبر و 8 ديسمبر عام 1903م. وفي الحالتين، تم إطلاق الطائرة من فوق عوامة ترسو على نهر البوتوماك، ولكن الطائرة ارتطمت وغرقت في الماء كل مرة.

الأَخَوَان رايت.
شغف الشابان الأمريكيان، أورفيل وويلبر رايت بالطيران خلال التسعينيات من القرن التاسع عشر الميلادي بجانب إدارتهما ورشة لتصنيع الدراجات تقع في بلدة دايتون بولاية أوهايو الأمريكية. قرأ الأخوان الكتب التي عثرا عليها والتي تتحدث عن الطيران. وبدآ عام 1899م في بناء طائرتهما الشراعية. وفي العام التالي مباشرة شرعا بالقيام بطلعات جوية لهذه الطائرات قرب كيتي هوك بولاية كارولينا الشمالية، وهي منطقة تتصف بسكون الريح وكثرة الكثبان الرملية. وبعد كثير من المحاولات، تمكنا من تنفيذ نظام يكفل التحكم في قيادة الطائرة أثناء الطيران.
وفي عام 1903م، قام الأخوان رايت ببناء أول طائرة لهما وأطلقا عليها اسم فلاير. وزودت الطائرة بجناح مزدوج ومحرك احتراق داخلي قدرته 12حصانًا (أي ما يعادل 9 كيلوواط). ُصنعت الأجنحة من الهياكل الخشبية المغطاة بقماش قطني، وكان طولها ـ من الطرف إلى الطرف ـ 12,29م. ويكون قائد الطائرة فوق الجناح السفلي، بينما يدفع المحرك المثبت على يمينه مروحتين خشبيتين مثبتتين خلف الجناح. وبدلاً من العجلات، زودت الطائرة بزحافات خشبية، وقبل كل شيء، زودت الطائرة بنظام التحكم الناجح الذي كان الأخوان رايت قد ابتكراه لطائرتهما الشراعية. ومن أهم ملامح هذا النظام، الجهاز الخاص بعطف طرفي الجناح عند الحاجة للمحافظة على توازن الطائرة أثناء الطيران. ويتركب هذا الجهاز من سلك مربوط إلى طرفي الجناح متصل بحامل مثبت حول ردفي الطيار. ويستطيع الطيار تحريك ردفيه إلى طرف أحد الجناحين أو الآخر للمحافظة على اتزان الطائرة، وكذلك للتحكم في قيادتها في أثناء الطيران.

و في 17 ديسمبر عام 1903م، أصبح أورفيل رايت أول إنسان يطير بنجاح بطائرة أثقل من الهواء تندفع آليًا. وتم هذا الطيران قرب بلدة كيتي هوك. وأطلق الأخوان الطائرة من فوق قضيب طوله 18م وضع على سطح رملي مستو. وعندما أقلعت الطائرة طارت في الهواء لمسافة 37م بسرعة تصل إلى نحو 48كم/ساعة ولفترة تقرب من 12 ثانية فقط. وفي نفس اليوم كرر الأخوان رايت المحاولة ثلاث مرات، كانت أطول طلعة من بينها من نصيب ويلبر الذي قطع 260م في 59 ثانية.
ولم يتنبه معظم الناس ـ فيماعدا قلة من المهتمين ـ إلى ماحققه الأخوان رايت. لكنهما على الرغم من ذلك استمرا في إجراء التحسينات على طائرتهما. ثم تمكنا في نهاية عام 1905م من بناء أول طائرة وإطلاقها، وكانت قادرة على المناورة الكاملة ومستمرة في الطيران لأكثر من نصف ساعة متواصلة في المرة الواحدة. ولم يتم الاعتراف الرسمي بهذه الطلعات لأنه لم يشاهدها أي من الأشخاص الحكوميين. وفي فرنسا عام 1908م، قام ويلبر بأول طيران عام رسمي أدهش خلاله العالم بقدرات طائرته على الطيران.

الرواد الآخرون وطائراتهم.
أصبح ألبرتو سانتوس دومونت، البرازيلي الذي يعيش في فرنسا، ثالث من يقلع بطائرته. ففي عام 1906م، قام بإجراء بعض الطلعات القصيرة بطائرته التي لها نفس شكل الطائرة الورقية الصندوقية. ثم قام بعد ذلك بتصنيع سلسلة من الطائرات اعتبرت من الطائرات الأولى التي استخدمت في الطيران الخاص والترفيهي. وفي عام 1906م، قام تراجان فولا، المبتكر الروماني الذي كان يعيش في فرنسا، بتصميم أول طائرة كاملة الحجم أحادية الجناح (أي ذات جناح مفرد). وتميزت طائرته بتثبيت المراوح أمام الجناح وليس خلفه. ورغم فشل التجارب التي أجريت على هذه الطائرة إلا أنها تركت أثرًا على الطائرات التي جاءت بعدها.
وفي 4 يوليو عام 1908م، أصبح المبتكر جلن هاموند كيرتيس أول أمريكي يقوم بعرض جوي عام قطع خلاله مسافة تزيد على الكيلومتر. وقاد طائرته ـ ثنائية الجناح ـ التي أطلق عليها اسم جون بج لمسافة 1,55كم بسرعة قدرها 55كم/ساعة. وفي بداية عام 1908م، قام الطيار الإنجليزي هنري فارمان، الذي كان يعيش في فرنسا، بمحاولة طيران دوراني لمسافة كيلومتر. وفي 30 أكتوبر من نفسالعام طار فارمان لمسافة 27كم مباشرة في اتجاه الريف الفرنسي في أول طيران عبر البلاد. وقام الأخوان رايت بطلعات دورانية أكثر طولاً. وأصبح كل من كوتيس، وفارمان، والأخوين رايت من أنجح صانعي الطائرات.
وكان توماس.إي.سيلفردج، الضابط بسلاح الإشارة في الجيش الأمريكي، هو أول من فقد حياته في حادث تحطم طائرة. فقد حدث أن قرر الجيش الأمريكي اختبار القيمة العسكرية لطائرة الأخوين رايت. وفي 17سبتمبر عام 1908م، قام سيلفردج باصطحاب أورفيل رايت في طائرته. وعند ارتفاع قدره 23م عن سطح الأرض انكسرت إحدى المروحتين، وتحطمت الطائرة وقُتل سيلفردج، بينما جُرح رايت. ولم يكن ذلك مبعثًا لليأس في قلبي الأخوين رايت، بل لقد فازا في عام 1909م بعقد مع الجيش الأمريكي لتصنيع أول طائرة حربية في العالم.
وفي عام 1909م، قام المبتكر الفرنسي لويس بليريو، بأول طيران دولي، حيث قاد طائرته أحادية الجناح، طراز بليريو إكس-1 لمسافة 37,8كم عبر القنال الإنجليزي متجهًا من فرنسا إلى إنجلترا. وكانت الطائرة ذات جسم طويل مضموم، وذيل في الخلف للتحكم، مع عجلات مسننة للهبوط. ومن بين الطائرات أحادية الجناح التي نجحت خلال تلك الفترة، سلسلة طائرات أنطوانيت التي صممها المبتكر الفرنسي ليون ليفافاسير.
وانتشرت بسرعة في جميع أنحاء العالم حمى الطيران بطائرات أثقل من الهواء. ففي عام 1910م، فاز الحاوي الأمريكي العظيم هاري هوديني بجائزة نادي الطيران في أول سباق جوي يقام في أستراليا. أتم هوديني بنجاح وتحكم ثلاث طلعات جوية بطائرة ثنائية الجناح تشبه الطائرة الشراعية الصندوقية، وذلك قرب استراحة ديجر، مقاطعة فكتوريا في 18مارس عام 1910م.
وفي 16 يوليو عام 1910م، أقلع جون دويجان في أول طائرة أسترالية الصنع. وأصبح و.إي. هارت طبيب الأسنان من مواليد سيدني، أول أسترالي يُمنح شهادة طيران عام 1911م.
وفي عام 1911م أيضًا، قام كالبريث ب.رودجرز بأول طيران عبر الولايات المتحدة، مبتدئًا من خليج شيب شيد بولاية نيويورك حتى وصل إلى لونج بيتش بولاية كاليفورنيا. وفي خلال 84 يومًا استغرقتها الرحلة قام رودجرز بالهبوط أو الارتطام نحو70مرة مستخدمًا طائرة الأخوين رايت. واضطر إلى استبدال جميع أجزاء طائرته تقريبًا قبل أن يصل إلى لونج بيتش، وبلغ زمن طيرانه الفعلي 3 أيام و10 ساعات و24 دقيقة.
وفي عام 1912م، قامت شركة ديبردسون الفرنسية ببناء أول طائرة ناجحة ذات إنشاء أحادي القشرة، أطلقت عليها اسم ديبردسون مونوبلين ريسر. وكان جسم الطائرة قد صُمم بشكل أنبوبي انسيابي مما خفف من وزن الطائرة لعدم الحاجة إلى مقابض لتثبيت أجزاء الجسم. وفي تلك الأثناء، تم تطوير طائرات ذات محركين. وفي عام 1913م، قام المبتكر الروسي، إيجور أي.سيكورسكي، بإطلاق طائرته التي أطلق عليها اسم جراند، وهي أول طائرة مزودة بأربعة محركات. لكن معظم الطائرات ظلت حتى ذلك الوقت بمحرك واحد.
شارك الطيارون الرواد بطائراتهم في العديد من السباقات والعروض. وكانت تلك فرصة لاختبار مدى مهارة الطيارين، مما أثر في تحسين تصميم الطائرات، كما رفع من شعبية الطيران. وفي عام 1913م، ذاع صيت الطيار الفرنسي أدولف بيجو بسبب مهارته في إجراء العروض والألعاب الجوية.

سجل السرعات ـ للطائرات الأرضية
السرعة - ميل ف.س -السرعة - كلم ف.س-السنة -الطيار - الدولة
38,0 - 61,2 - 1905 - و. رايت - أمريكا
108,18 -174,1 - 1912 - ج. فيدرنز - فرنسا
222,97 - 358,84 - 1922 - و ميتشل - أمريكا
294,38 - 473,76 - 1932 -ج هـ دوليتل - أمريكا
304,98 - 490,82 -1933 - ج ويديل - أمريكا
469,22 - 755,14 - 1939 - ف وينديل -ألمانيا
606,25 - 975,66 - 1945 - هـ ج ولسون - بريطانيا
670,98 - 1079,84 - 1948 - ر.ل. جونسون - أمريكا
698,5 - 1124,13 -1952 - ج.س ناش - أمريكا
755,14 - 1215,28 - 1953 - ف.ك إيفرست - أمريكا
822,26 - 1323,3 - 1955 - هـ.أ. هانز - أمريكا
1132,13 - 1821,99 -1956 - ل.ب. تويس - بريطانيا
1207,6 - 1943,44 - 1957 -أ.درو - أمريكا
1404,09 -2259,66 - -1958 - و.و. إروين - أمريكا
1483,85 -2388,03 - 1959 - ج موسولوف - روسيا
1525,96 -2455,79 - 1959 - ج.و. روجرز - أمريكا
1606,32 -2585,12 - 1961 - ر.ب روبنسون - أمريكا
1665,89 -2680,99 - 1962 - ج. موسولوف - روسيا
2070,1 - 3331,5 - 1965 -ر.ل ستيفنز - أمريكا
2193,16 - 3529,56 - 1976 - إي.و جورسز - أمريكا


يتبع

الغراب الأسود 20 - 11 - 2010 02:22 AM

الحرب العالمية الأولى (1914 ـ 1918م).
كانت الحرب العالمية الأولي سببًا في التقدم الكبير في تطوير الطائرة. ففي بداية المعارك، تنبه الطرفان المتقاتلان لأهمية الطائرة في تحديد مواقع قوات العدو، وكذلك مواقع القواعد العسكرية. وقام المهندسون بتصميم محركات ذات قدرات أكبر لكي تتم السيطرة الجوية بطائرات مقاتلة أكثر سرعة، وقاذفات قنابل أكبر حمولة. وبدأت كل من ألمانيا والولايات المتحدة الأمريكية وفرنسا وبريطانيا في إنتاج الآلاف من هذه الطائرات.

شاعت المطاردات الجوية (وهي المعارك بين الطائرات المقاتلة). واستخدمت الطائرات المائية لتصوير قطع الأسطول المعادية وكذلك لقذف الغواصات المعادية. ولمعرفة المزيد عن قصة الطيران في الحرب العالمية الأولى،

ولم تكن معظم الطائرات في بداية الحرب تتخطى سرعة 110كم/ساعة. أما في نهايتها فقد تجاوزت معظمها سرعة 210كم/ساعة. وتمكن الألماني هوجو يونكرز، الذي عمل صانعًا للطائرات، من ابتكار واحدة من أكثر الطائرات تأثيرًا في مجريات الحرب. أطلق على طائرته اسم يونكرز ج ـ 1، وقامت بأول رحلة لها عام 1915م. وكانت الطائرة الأولى التي تصنع بالكامل من المعدن، وكذلك الأولى التي لها جناح كابولي. ويذكر أن الأجنحة السابقة للطائرات كانت تثبت بقوائم (قوابض) تصل الجناحين بالجسم مما كان يحد من سرعة الطيران. أما الأجنحة الكابولية فتثبت بالكامل ببنية داخلية.

العصر الذهبي لتطوير الطائرة.
كان ذلك خلال فترة العشرينيات والثلاثينيات من القرن العشرين. ففي هذه الفترة حدث تقدم متسارع في تصميم الطائرات، كما بدأت الخطوط الجوية في العمل على نطاق واسع. كذلك كانت هذه هي الفترة التي تمتع خلالها العالم بمهارة الطيارين الشجعان ومقدرتهم على البقاء في الجو مدة طويلة.
وفي عام 1919م، بدأت شركات الخطوط الجوية الصغيرة العمل في قارة أوروبا. واستخدمت هذه الشركات قاذفات القنابل المتخلفة عن الحرب العالمية الأولى، بعد إعادة بنائها لحمل الركاب والبريد في رحلات قصيرة بين المدن الأوروبية. وزودت قمرة الركاب (كابينة) في بعض هذه الطائرات بمقاعد ذات مساند وبزخارف أنيقة. ولم يكن من الممكن للركاب في ذلك الوقت أن يسمعوا بعضهم بعضًا بسبب ارتفاع أزيز المحركات، كما أن القمرة لم تكن دافئة.
وبعد الحرب العالمية الأولى، عرضت الحكومة الأمريكية آلاف الطائرات الحربية الزائدة عن حاجتها للبيع، في صفقات مغرية. وقام الكثيرون من الطيارين الحربيين القدامى بشراء بعض هذه الطائرات لاستخدامها في رحلات شديدة المخاطرة للاستمتاع ومشاهدة الريف من أعلى، وقدمت خلال تلك الرحلات عروض شديدة الجرأة. فقد أدى الطيارون ألعابًا جوية بهلوانية، ومشوا بين طرفي الجناح أثناء الطيران، وقفزوا من جناح طائرة إلى أخرى.
وفي الوقت نفسه، نما الاهتمام بالريادة في مجال خدمات الخطوط الجوية. ففي عام 1918م، بدأت إدارة البريد الأمريكية خدمات بريدية، مستخدمة الطائرات البريطانية التصميم ديهافيلاند.
وفي عام 1919م، قامت الطائرة الفرنسية فارمان بأول رحلة خطوط جوية دولية من فرنسا إلى بلجيكا. وفي أستراليا، قام اثنان من رواد الطيران هما هدسون فيش وزميله ب.ج ماك جينيس بالاشتراك مع شركة متخصصة في تربية الماشية بولاية كوينزلاند، بتأسيس شركة كانتاس في العام 1920م. وفي نوفمبر عام 1922م، حصلت شركة كانتاس على عقد إنشاء خط جوي مدعوم ماليًا، يربط بين مدينتين من مدن ولاية كوينزلاند هما شارلفيل وكلونكري.
وظلت خطوط الطيران محدودة النشاط بشدة من حيث المدى والإمكانات، وذلك حتى منتصف الثلاثينيات من القرن العشرين. وأنتج الألمان الطائرة يونكرز ج 23؛ في عام 1924م، بداية لسلسلة من الطائرات ثلاثية المحركات وذات جسم معدني، ومدى أطول وقدرة أكبر. وجاء تصميم الطائرة الأمريكية فورد تريموتور عام 1926م مماثلاً، وعرفت باسم تين جوس وفي عام 1929م، تمكنت الطائرة البرمائية دورنيير دو إكس من حمل 150 راكبًا لمسافة 1700كم. وعلى الرغم من بطء الطائرة البريطانية هـ ب 42 فقد كان يعوِّل عليها بالرغم من أنها طائرة خطوط جوية ثنائية الجناح، وافتتحت بها الخطوط الإمبراطورية البريطانية. وفي عام 1933م، بدأت ثورة في تصميم طائرات الخطوط الجوية بظهور الطائرة بوينج 247 التي طارت بسرعة قدرها 300كم/ساعة. وعلى الرغم من أنها لم تحمل سوى عشرة ركاب، إلا أنها كانت أول طائرة خطوط جوية حديثة.
وشاركت المسابقات الجوية في تشجيع إدخال التحسينات على تصميم الطائرات خلال العشرينيات من القرن العشرين. ومن بين السباقات المهمة، تذكار شنايدر للطائرات المائية. وبينما طار الفائز في سباق شنايدر تروفي عام 1920م، بسرعة قدرها 172كم/ساعة، فقد وصلت سرعة طيران الفائز عام 1931م إلى 547كم/ساعة.

طيارو العصر الذهبي.
خلال فترة العشرينيات والثلاثينيات من القرن العشرين أصبح تحطيم الطيارين للأرقام القياسية يأخذ اهتمامًا عالميًا. وبدأ الطيارون في التأكيد على أن الطائرات تستطيع قطع المسافات الطويلة بين قارات أوروبا وأمريكا الشمالية وإفريقيا وآسيا.

وفور انتهاء الحرب العالمية الأولى، أعلنت الحكومة الفيدرالية الأسترالية عن جائزة قدرها 10,000 جنيه إسترليني لأول طاقم يستطيع الطيران بين لندن وأستراليا. وبموجب هذا الإعلان أجرت الحكومة سباقًا جويًا كبيرًا، فاز فيه أخوان أستراليان هما روس وكيث سميث، فقد هبطا هما وطاقمهما المكون من أربعة أشخاص، بطائرتهما الفيكرز فيمي في مدينة داروين يوم 10 ديسمبر 1919م. واستغرقت هذه الرحلة الريادية 27يومًا و20 ساعة. كذلك قام عدد من طياري الولايات المتحدة برحلات طويلة المدى خلال فترة العشرينيات والثلاثينيات من القرن العشرين.

وفي عام 1926م، قام ريتشارد إي. بيرد، وفلويد بنيت بأول طيران فوق القطب الشمالي. واستخدما في ذلك الطائرة دوتش ذات المحركات الثلاثة. وفي عام 1929م، قام بيرد وبيرنت بالتشين بأول طيران فوق القطب الجنوبي في طائرة فورد ذات ثلاثة محركات. وفي عام 1927م، قام تشارلز ليندبيرج بأول طيران منفرد عبر المحيط الأطلسي دون توقف. واستغرقت رحلته التي كان طولها 5,810كم، بين جاردن سيتي بولاية نيويورك حتى باريس، زمنًا قدره 33,5 ساعة. وكانت طائرة ليندبيرج ـ والتي سُميت روح سانت لويس ـ وهي طائرة من طراز يدعى ريان أحادية السطح، قد صنِّعت خصيصًا للرحلة، وزودت بمحرك من نفس طراز طائرة الأخويْن رايت بعد إدخال الكثير من التعديلات عليه. وزودت الطائرة بأكثر معدات الطيران تقدمًا في ذلك الوقت، مما ساعد ليندبيرج على تحديد طريقه عبر المحيط دون استخدام أجهزة الاتصال اللاسلكي.

وفي عامي 1925و1926م قام السير ألان جون كوبام الطيار البريطاني، برحلة طيران طويلة المدى ذهابًا وإيابًا من بريطانيا إلى بورما وجنوب إفريقيا. وفي عام 1928م، أصبح الطيار الأسترالي برت هينكلر أول من يطير بمفرده من بريطانيا إلى أستراليا. وقطع الرحلة في 15يومًا ونصف اليوم.

ذاع أيضًا صيت طيارين أستراليين آخرين هما السير تشارلز كينجزفورد سميث، وتشارلز أولم في عام 1928م، عندما أصبحا أول من يطير مباشرة من الولايات المتحدة إلى أستراليا، مستخدمين الطائرة فوكر ذات المحركات الثلاثة المسماة سذرن كروس. وصحبهم في نفس الرحلة أمريكيان هما هاري ليون ليعمل ملاحًا، وجيم وارنر ليعمل فنيًا لاسلكيًا. واستكملت الرحلة التي كان طولها 11,840كم في برزبين واستغرقت 83 ساعة و38 دقيقة.

وفي عام 1931م، قام الطياران الأمريكيان هيوج هيرندون، وكليد بانجبورن بأول رحلة لعبور المحيط الهادئ دون توقف. وفي عام 1933م، قام طيار أمريكي آخر يدعى وايلي بوست بقيادة الطائرة لوكهيد فيجا في أول رحلة حول العالم بمفرده.

شارك العديد من النساء في اجتذاب الإعجاب لقيامهن برحلات جوية ريادية جسورة. ففي عام 1930م، احتلت رائدة الجو البريطانية آمي جونسون أخبار الصفحة الأولى في كل أنحاء العالم، عندما طارت منفردة من بريطانيا إلى أستراليا. وفي عام 1932م، أصبحت أميليا إيرهارت، الطيارة الأمريكية أول امرأة تعبر المحيط الأطلسي منفردة دون توقف. وفي عام 1935م، كانت الطيارة جين باتي النيوزيلندية أول امرأة تعبر جنوبي المحيط الأطلسي منفردة، وذلك عندما طارت من بريطانيا حتى البرازيل.

الأرقام القياسية للمسافات المقطوعة دون توقف للتزود بالوقود
المسافـــة بالميــل- المسافـــة بالكلم- السنــة- الطيـــار -الدولــة- الرحلـــــــة
*1,950- *3,138 -1919 -جون ألكوك، -آرثر وتن براون -بريطانيا- من سانت جونز بكندا إلى كليفدن بأيرلندا
*2,516 *4,049 1923 ج.أ. مكريدي، أ.ج. كيلي الولايات المتحدة من نيويورك إلى سان دييجو
3,610 5,810 1927 ت.أ. ليندبيرج الولايات المتحدة من جاردن سيتي بنيويورك إلى باريس
3,911 6,294 1927 ك. تشمبرلين، ك. أ.ليفين الولايات المتحدة من نيويورك إلى أيزلبن بألمانيا
4,467 7,189 1928 أرتورو فيرارين. ك.ب ديلبرت إيطاليا من روما إلى توروس بالبرازيل
4,912 7,905 1929 د. كوست، م. بيلون فرنسا من باريس إلى كيكيهار بالصين
5,657 9,104 1933 ب. كودو، م. روسي فرنسا من نيويورك إلى رياق بسوريا
11,236 18,083 1946 ت.د. دافيز، من أطقم البحرية الولايات المتحدة من بيرث بأســتراليـا إلى كولمبــوس، بولايــة أوهايو بالولايات المتحدة الأمريكية.
12,532 20,168 1962 س.ب إيفلي، من أطقم القوات الجوية الأمريكية الولايات المتحدة من كادينـا بأوكيـناوا إلى توريجـون بأسبـانـيا.
24,987 40,212 1986 ر. روتان، ج. بيجر الولايات المتحدة حول العالم. البداية والنهاية بقاعدة إدواردز الجوية، كاليفورنيا، الولايات المتحدة.
32 ساعة 49 دقيقة:3 ثانية 1992 كلود ديلورم وجين بوييه فرنسا حول العالم

المصدر: الأرقام القياسية العالمية والأمريكية والجمعية الوطنية للطيران.
* رقم قياسي غير رسمي.


التحسينات الهندسية.
أجريت خلال فترة الثلاثينيات من القرن العشرين العديد من التحسينات الهندسية، جعلت من الممكن للطائرات أن تكون أكبر حجمًا، وأن تطير بسرعات أكبر، ولمسافات أبعد، ولارتفاعات أعلى، وأن تنقل حمولات أثقل. واستطاع المهندسون استنادًا إلى التقدم في علم الديناميكا الهوائية أن يجعلوا طائراتهم أكثر انسيابية بدرجة تجعلها تشق طريقها خلال الهواء بيسر. واجه الطيارون والركاب مشكلة صعوبة التنفس بسبب تناقص الهواء عند الارتفاعات العالية. لذلك، صمم المهندسون القُمَرات المضبوطة الضغط التي جعلت التنفس عند ارتفاع 9,000م بنفس سهولته عند ارتفاع 2,000م. كذلك قاموا بتصميم المراوح التي يمكن التحكم في مقدار خطوتها مما سمح للطيارين بإعادة ضبط وضع ريشة المروحة عند أفضل زاوية لها عند كل سرعة طيران. كذلك كان التحسين في معدات الاتصال اللاسلكي سببًا في تمكين الطيارين من تلقي تعليمات الطيران من المحطات الأرضية. أما الربان الآلي (أو الأوتوماتي) الطيار الجيروسكوبي فقد بدأ في العمل خلال الثلاثينيات من القرن العشرين، وكان سببًا في زيادة دقة الملاحة الجوية، وفي مساعدة الطيارين على تجنب الإرهاق الزائد خلال الرحلات الطويلة.
واستُخدمت التحسينات الرئيسية المتاحة كافة في ذلك الوقت لتصميم واحدة من أنجح الطائرات على الإطلاق وتصنيعها، وهي الطائرة دوجلاس دي. سي ـ 3 الأمريكية. وقامت هذه الطائرة ثنائية المحرك بأول رحلة جوية تحمل ركابًا عام 1936م. وهي تستطيع حمل 21 راكبًا، وتطير بسلام عند سرعة تصل إلى 274 كم/ ساعة، وسرعان ما أصبحت طائرة النقل الرئيسية لدى خطوط الطيران الكبرى في كافة أنحاء العالم. وحتى الآن، مازالت الطائرات من طراز دي. سي ـ 3 القديمة تحمل الركاب والبضائع في رحلات داخلية في أجزاء كثيرة من العالم.
وخلال الثلاثينيات من القرن العشرين أيضًا، حملت الطائرات المائية الكثير من الركاب، واستخدمت أساسًا لعبور المحيطات.
ومن أوائل الطائرات المائية التجارية، الطائرة الألمانية دورنيير دو إكس ذات الاثني عشر محركًا. وكانت الطلعة الأولى لهذه الطائرة عام 1929م، لكنها لم تحقق أي انتشار.
وفي عام 1936م، قامت بريطانيا بتطوير الطائرات المائية التابعة للإمبراطورية البريطانية من أجل توفير خدمة النقل الجوي بين بريطانيا والأجزاء المترامية للإمبراطورية. وآخر الطائرات المائية وأشهرها كانت الطائرة بوينج 314 كليبر التي استطاعت حمل 74 راكبًا. وفي عام 1939م بدأت الطائرة كليبر أولى خدماتها المنتظمة للركاب عبر المحيط الأطلسي. وفي عام 1939م، بدأت بريطانيا في تشييد خدمة بريدية عبر شمالي الأطلسي مستخدمة الطائرات المائية للإمبراطورية. إلا أن هذه الخدمة توقفت مع الحرب العالمية الثانية. وبعد انتهاء الحرب، كان تطور الطائرات الأرضية لتصبح أكثر قدرة، وكذلك تطوير المطارات وتزويدها بممرات هبوط ذات طول كاف لاستقبالها، سببًا في انتهاء عصر الطائرات المائية في معظم أنحاء العالم.

فترة الحرب العالمية الثانية (1939-1945م).
قامت كل من ألمانيا وبريطانيا واليابان والولايات المتحدة وكذلك دول أخرى، بإنتاج الآلاف من الطائرات العسكرية خلال هذه الفترة. ومثلما حدث خلال فترة الحرب العالمية الأولى، قام المهندسون بإدخال تعديلات جوهرية في تصميم القاذفات والمقاتلات. وكانت القاذفات التي طورت في أثناء الحرب تقدر على حمل ضعف الحمولة، وتقطع ضعف المسافة دون إعادة التزود بالوقود، مقارنة بقاذفات ما قبل الحرب. وعند بداية الحرب، كانت السرعة القصوى للمقاتلات تصل إلى 480كم/ساعة، وترتفع نحو 9,000م. أما في نهاية الحرب، فقد وصلت سرعة الطائرات إلى أكثر من 640كم/ساعة، وأصبحت تعلو لارتفاعات تزيد على 12,000م. بل وكان من الممكن للمقاتلات النفاثة أن تتجاوز هذه السرعة.
وفي بداية الثلاثينيات من القرن العشرين قام فرانك ويتل المهندس البريطاني بوضع تصميمات المحرك النفاث. إلا أن الطيران الأول بطائرة مزودة بمحرك نفاث، قامت به الطائرة الألمانية هِيْ -178 عام 1939م. أما أول طائرة نفاثة بريطانية فكانت الطائرة جلوستر إي 28/39، التي أنتجت عام 1941م. وتمكنت الطائرة الألمانية ميسرشميث مي ـ 262، وهي أول طائرة نفاثة تستخدم في المعارك الجوية في أثناء الحرب العالمية الثانية، من السيادة على جميع مقاتلات الحلفاء، بما فيها الطائرة جلوستر متيور ـ أول طائرة قتال بريطانية نفاثة. وكان يمكنها أن تطير بسرعات تزيد على 880كم/ساعة. أما أول طائرة أمريكية نفاثة فكانت الطائرة بيل ب ـ 59 أ عام 1942م.

كان العلماء الألمان قد قاموا بإجراء التجارب على الطائرات الصاروخية منذ عام 1928م. وقاموا ـ في بداية الحرب العالمية الثانية ـ بإنتاج النموذج الأول (نموذج اختبار بحجم كامل للطائرة) ميسرشميت م.ي 163. واستطاعت هذه الطائرة المدفوعة صاروخيًا، الطيران بسرعة تزيد على 970كم/ ساعة. استخدم المهندسون الألمان هذه الطائرة نموذجًا للمقاتلة م.ي 163 كوميت التي أدت مهام قتالية في نهاية الحرب.

طائرات الخطوط الجوية بعيدة المدى.
قرب نهاية الحرب العالمية الثانية بدأت الشركات المنتجة في تطوير طائرات النقل عبر المحيط الأطلسي دون توقف، وذلك لاستخدامها على خطوط الطيران التجارية. واستخدمت لذلك الطائرات رباعية المحركات التي كانت قد طورت أثناء الحرب. ففي الرحلات طويلة المدى لخدمة الركاب استخدمت الطائرتان الأمريكيتان دوجلاس دي.سي ـ 4، ولوكهيد كونستليشن. كذلك تم في فترة السلم تطوير مقاتلات فترة الحرب مثل الطائرة البريطانية أفرو يورك التي طُوِّرت أصلا ًعن الطائرة لانكستر لتحمل 45 راكبًا. إلا أنه كان لابد لها أن تتوقف في طريق عبورها للمحيط لإعادة التزود بالوقود. لقد كان عبور المحيط دون توقف محتاجًا إلى إنتاج محركات ذات قدرات أكبر، وأصبحت المحركات النفاثة في عام 1945م، تمتلك هذه القدرة المطلوبة، إلا أن استهلاكها للوقود كان لايزال مرتفعًا، مما جعلها تحتاج إلى إعادة التزود بالوقود بعد مسافة طيران قصيرة. وبدلاً من انتظار تحسين المحركات النفاثة، تم استخدام محركات ترددية (أي مكبسية) أكبر قدرة، مازال بعضها يستخدم حتى الآن في العديد من الطائرات. ومن بين أواخر الطائرات التي دفعت آليًا بمحركات مكبسية الطائرة دوجلاس دي.سي ـ 7، والطائرة لوكهيد سوبر كونستليشن، والطائرة بوينج 377 ستراتوكروزر. كانت كل من هذه الطائرات تحمل 100 راكب عبر المحيط دون توقف، من الولايات المتحدة حتى أوروبا بسرعات تزيد على 480كم/ ساعة.

طلعات الطيران الشهيرة
1908م قام هنري فارمان الفرنسي بأول رحلة دائرية رسمية طولها كيلو متر واحد. وطار كذلك لمسافة 27 كم في أول طيران عبر البلاد.
1908م قام جلن هـ. كيرتيس بأول طيران عام رسمي في الولايات المتحدة الأمريكية، لمسافة تزيد على الكيلو متر.
1911م قام كالبريث ب. رودجرز بأول رحلة عبر الولايات المتحدة، حيث طار من مقاطعة شيب شيد بولاية نيويورك حتى لونج بيتش بولاية كاليفورنيا، في سلسلة من الطلعات القصيرة استغرقت 84 يوما.
1919م قام الطياران البريطانيان، جون ألكوك، وآرثر وتن براون بأول رحلة جوية عبر المحيط الأطلسي دون توقف، قطعا خلالها مسافة قدرها 3,138كم من سانت جونز في نيوفاوندلاند بكندا، إلى كليفدن بأيرلندا.
1924م قامت طائرتان تابعتان للجيش الأمريكي، بأول رحلة حول العالم استغرقت نحو ستة أشهر. بلغ طول الرحلة 42,398 كم.
1926م أول طلعة جوية فوق القطب الشمالي، قام بها ريتشارد بيرد، و فلويد بنيت الأمريكيان معا.
1927م أول طيران منفرد دون توقف عبر المحيط الأطلسي قام به تشارلز أ. ليندبيرج، الطيار الأمريكي، حيث قطع مسافة 5,810 كم من جاردن سيتي بولاية نيويورك إلى باريس في زمن قدره 33,5 ساعة.
1928م أول رحلة جوية عبر المحيط الهادئ، قام بها تشارلز كينجزفورد سميث وأفراد طاقمه، مبتدئًا من أوكلاند بولاية كاليفورنيا الأمريكية، ومنتهيًا عند برزبين بأستراليا، بعد التوقف في محطات هونولولو في هاواي وصوفا في فيجي.
1929م تحققت أول رحلة جوية فوق القطب الشمالي قام بها ريتشارد. بيرد الأمريكي مع أفراد طاقمه.
1931م قام الطياران الأمريكيان، كلايد بانجبون، وهيوج هيرندون بأول رحلة طيران دون توقف عبر المحيط الهادي. كانت بداية الرحلة في طوكيو ونهايتها في ويناتشي بولاية واشنطن بالولايات المتحدة الأمريكية.
1932م كانت أميليا إيرهارت الأمريكية، أول امرأة تطير بمفردها عبر المحيط الأطلسي. كانت البداية من ميناء جريس في نيوفاوندلاند بكندا، أما النهاية فكانت في مرعى قرب بلدة لندنديري بأيرلندا. استغرقت الرحلة زمنا قدره 15 ساعة، و18 دقيقة.
1933م أول طيران منفرد حول العالم، قام به وايلي بوست قاطعا مسافة قدرها 25,099 كم في زمن قدره 7 أيام و18 ساعة و49 دقيقة.
1949م قام طاقم من القوات الجوية للولايات المتحدة بأول طيران حول العالم دون توقف قاطعا مسافة قدرها 37,742 كم في زمن قدره 3 أيام و22 ساعة ودقيقة واحدة.
1986م قام ريتشارد روتان، وجينا ييجر الطياران الأمريكيان، بأول طيران حول العالم دون توقف ودون التزود بالوقود. بدأت الرحلة وانتهت عند قاعدة إدواردز الجوية، بولاية كاليفورنيا بالولايات المتحدة الامريكية.
1988م قام كلاي لاسي الطيار الأمريكي، ومعه طاقم من خمسة أفراد، و135 راكبا، بطلعة جوية طار فيها حول العالم في زمن قياسي قدره 16 ساعة و54 دقيقة و15 ثانية.
1992م طار كلود ديلورم وجين بوييه من الخطوط الجوية الفرنسية برحلة حول العالم بطائرة من طراز كونكورد في زمن قدره 32 ساعة و49 دقيقة و3 ثوان.


عصر النفاثات
عكف المهندسون خلال الأربعينيات من القرن العشرين على تحسين المحركات النفاثة، التي أنتجت خلال الحرب العالمية الثانية وكانت تتصف بالبدائية. وظهر احتياج القوات الجوية الأمريكية لهذه المحركات النفاثة لزيادة قدرة قاذفاتها ومقاتلاتها، وزيادة سرعتها. وعند بداية الحرب الكورية (1950-1953م) كانت هناك بالفعل طائرات نفاثة ذات فعالية مرتفعة. وحدث أن التقت طائرتان شهيرتان في معركة فوق كوريا، والطائرتان هما: ف ـ86 سابر التابعة للقوات الجوية الأمريكية، و الميج ـ 15 السوفييتية (سابقًا).
وفي بريطانيا، أنتج مهندسوها أول طائرة نفاثة عملاقة تعمل في خدمة الخطوط الجوية التجارية. هي الطائرة دي هافيلاند كوميت وبدأت في خدمة الركاب عام 1952م، وسرعتها نحو 800كم/ساعة، ودرجة اهتزازها والضوضاء الصادرة عنها محدودة. وفي حادثتين متتاليتين انفجرت طائرتا كوميت أثناء الطيران وقتل جميع الركاب. وصدرت في الحال أوامر الحكومة البريطانية بوقف جميع طائرات الكوميت لفحصها. وتبين بعد الفحص، أن الخطأ يكمن في هيكل الطائرة. فقد كان الضغط داخل القُمْرة يتم ضبطه لضمان سلامة الركاب وراحتهم. فلما وصلت الطائرة إلى ارتفاعات شاهقة، حيث الهواء الجوي منخفض الضغط، تسبب الضغط المرتفع داخل القمرة في إضعاف الغلاف المعدني للطائرة. وانهار المعدن، وتحطمت الطائرة في الجو. وبعد الكارثة، تم تطوير الهيكل، ليصير أكثر متانة. وقد تم ذلك لجميع طرازات الطائرات بما فيها الكوميت الجديدة.
وفي نفس الفترة، أنتجت بريطانيا أيضًا، الطائرة فيكرز فيسكونت وهي طائرة نقل تدفع مراوحها آلياً بوساطة محرك نفاث. وبدأت هذه الطائرة التربومروحية في حمل الركاب عام 1953م.
وفي عام 1955م، أنتجت فرنسا الطائرة النفاثة ثنائية المحرك: الكارافيل بينما أنتج الاتحاد السوفييتي (السابق) أولى طائراته النفاثة ثنائية المحرك توبولوف تي. يو 104. كانت الشركات الأمريكية تعمل أيضًا على تصميم طائرات خطوط جوية تجارية نفاثة. ففي عام 1958م، بدأت الطائرة النفاثة بوينج 707، ذات المحركات الأربعة، خدمات السفر بين الولايات المتحدة وأوروبا. وحتى عام 1960م، عملت في خدمة نقل الركاب طائرتان نفاثتان أمريكيتان أخريان، هما: الطائرة ماكدونل دوجلاس دي.سي ـ 8، والطائرة كونفير 880. وكانت هناك خطط جاهزة على لوحات الرسم لطائرات أضخم. وكانت أولى هذه الطائرات العملاقة، الطائرة لوكهيد س ـ 5 أ جلاكسي للنقل العسكري، التي بدأت الخدمة في القوات الجوية الأمريكية عام 1969م. أما الطائرة الجامبو النفاثة التجارية أو الطائرة بوينج 747، فقد بدأت الخدمة عام 1970م حاملة نحو 500 راكب.
استشعرت الشركات الأوروبية لصناعة الطائرات، عدم قدرتها على منافسة الشركات الأمريكية العملاقة ـ مثل شركة بوينج ـ ما لم تعمل معًا. ونجح أول مشروع أوروبي مشترك لإنتاج سلسلة طائرات خدمة الخطوط الجوية طراز إيرباص أ ـ 300 وذلك طوال السبعينيات والثمانينيات من القرن العشرين.

الطائرات فوق الصوتية.
وهي طائرات تستطيع الطيران بسرعات تزيد على سرعة الصوت. وسرعة الصوت عند سطح البحر تساوي 1,225كم/ساعة، تقل عن ذلك كلما زاد الارتفاع. فعلى سبيل المثال، عند ارتفاع قدره 12,000م، تكون سرعة الصوت 1,060كم/ساعة.
ولم تملك أيٌّ من الطائرات الأولى من القدرة أو المتانة ما تستطيع به تجاوز سرعة الصوت. إلا أن القليل منها حاول الاقتراب من هذه السرعة، حيث لوحظ حينئذ أن الهواء أمام الطائرة لم يعد يفسح لها طريقًا، وبدأ يزأر محدثًا موجة صدمية مصحوبة باهتزاز عال مع صعوبة في قيادة الطائرة. وأصيب الطيارون بالخوف من ذلك الحاجز الصوتي الذي يصعب اجتيازه عند الرقم ماخ واحد صحيح ـ أي عندما تساوي سرعة الطائرة سرعة الصوت تمامًا.

يتبع

الغراب الأسود 20 - 11 - 2010 02:26 AM

كيف يعمل الدفع النفاث

http://www.solarnavigator.net/aviati...e_diagrams.jpg

المبدأ الأساسي للدفع النفاث
النفاث يدخل الهواء إلى المحرك فينضغط ثم يتم خلطه بالوقود ويحترق، ثم تندفع غازات الاحتراق في اتجاه مؤخرة المحرك، وما تحدثه الغازات أثناء اندفاعها وخروجها من المحرك هو فعل يقابله رد فعل يدفع المحرك في الاتجاه المضاد.
يمكن توضيحه من خلال تجربة بخرطوم المياه المستخدم في ري الحدائق. فعند توصيله بمصدر مياه مع غلق فوهة الخرطوم عند نهايتها، يؤدي ارتداد الماء إلى الخلف نتيجة غلق الفوهة إلى دفع الماء على السطح الداخلي للخرطوم في كل الاتجاهات. ويؤدي ذلك إلى الدفع عكس اتجاه المياه في الخرطوم في محاولة للضغط على الفوهة. وعند فتح الفوهة فإن هذا الضغط سيدفع بالماء إلى الخارج، مما يؤدي إلى فقدان اتزان الضغط داخل الفوهة. ويؤدي هذا إلى خفض الضغط الذي يدفع للأمام في منطقة الفوهة، بينما يستمر الماء في الضغط على الخلف والجوانب. وإذا ما تركت الفوهة تتحرك كيف تشاء فإن عدم اتزان الضغط داخل وخارج الفوهة، وكذلك اندفاع الماء منها، سيدفع بالفوهة إلى الخلف، وستتحرك الفوهة عكس اتجاه اندفاع الماء منها.

وقد وضع العالم الإنجليزي السير إسحق نيوتن المبدأ الأساسي للمحركات النفاثة في عام 1687م من خلال القانون الثالث للحركة. وينص هذا القانون على أن لكل فعل رد فعل مساوياً له في المقدار ومضاداً له في الاتجاه. وفي المثال السابق فإن الفعل يمثله اندفاع الماء من فوهة الخرطوم ورد الفعل هو القوة التي دفعت الخرطوم في الاتجاه المضاد. ويعتمد الدفع النفاث على نفس المبدأ في تغذية محركات الطائرات، حيث يتم رفع ضغط الهواء داخل المحرك. ويدفع هذا الضغط تيارًا من غازات الاحتراق بسرعة كبيرة من مؤخرة المحرك، ويمثل هذا التيار المندفع من غازات العادم الفعل. ويؤدي هذا الفعل إلى حدوث رد فعل مساو له في المقدار ومضاد له في الاتجاه يتمثل في قوة تدفع المحرك إلى الأمام.

تستخدم الصواريخ والمحركات النفاثة نفس المبدأ الأساسي للدفع النفاث، إلا أنهما تختلفان في مصدر الأكسجين اللازم لاحتراق الوقود في كل منهما. ففي حين تستخدم المحركات النفاثة أكسجين الهواء الجوي لحرق وقودها، فإن الصواريخ تحمل بداخلها الأكسجين اللازم لاحتراق الوقود بها. ولهذا فإنه يمكن للصواريخ أن تنطلق إلى الفضاء الخارجي الذي لا يحتوي على هواء جوي، بينما تعجز المحركات النفاثة عن الطيران خارج هذا الغلاف الجوي.

قدرة المحركات النفاثة
. تتولد هذه القدرة من قوة دفع النفاث، أي من دفع الغازات التي ينتجها احتراق الوقود في الهواء داخل غرفة الاحتراق والتي تنطلق من خلال فوهة المحرك فتعطيه قوة الاندفاع إلى الأمام. ويدخل الهواء إلى المحرك النفاث من خلال فتحة دخول في مقدمة المحرك ثم يتم ضغطه حتى يصل إلى ما بين 3 و 30 ضعف ضغط الهواء الجوي. ثم يندفع جزء من هذا الهواء إلى داخل غرفة الاحتراق حيث يتم خلطه بالوقود واحتراقه فيه. وتستخدم معظم المحركات النفاثة مستخلصات النفط السائلة المشابهة للكيروسين كوقود لها. ويصاحب اشتعال الوقود في الهواء المضغوط خروج كمٍ كبيرٍ من الطاقة التي تؤدي إلى ارتفاع درجة حرارة الغازات الناتجة عن هذا الاشتعال إلى 1,800 - 2,000 درجة مئوية. ويمكن أن تؤدي هذه الدرجة المرتفعة إلى تدمير أجزاء المحرك، إلا أن خلط هذه الغازات مع باقي الهواء المضغوط يؤدي إلى خفض هذه الدرجة إلى الحدود المناسبة، كما يقوم جزء آخر من الهواء بتبريد جدران غرفة الاحتراق. وتتجه هذه الغازات إلى نهاية المحرك حيث تنطلق من فوهته بأقصى سرعة فتنتج الدفع المطلوب.
يتضح من هذا أن إنتاج الدفع في المحركات النفاثة يعتمد على زيادة سرعة كمية من الغازات داخل المحرك، ولكن هناك كمية كبيرة من الطاقة الحرارية في غازات العادم لا يتم استغلالها. ويفقد المحرك هذه الطاقة نتيجة خروج تلك الغازات من فوهة المحرك بدرجة حرارة عالية. أما إنتاج الدفع بوساطة المراوح، فيعتمد على حركة كمية كبيرة من الهواء بسرعة قليلة، ولا يدع مجالا لفقد كمية كبيرة من الطاقة في الهواء. وبهذا فإن استخدام المراوح يقلل من كمية الطاقة المفقودة ويحقق كفاءة أعلى في إنتاج قوة الدفع.
وبالنظر إلى قوة الدفع التي نحصل عليها من المحركات النفاثة فسنجد أن لها قيمة ثابتة تقريبا مهما تغيرت سرعة الطيران. أما قدرة الدفع الناتجة من المراوح فإنها تتعرض لهبوط حاد عند زيادة سرعة الطيران، وعليه فإن الطائرات التي تسير بالدفع النفاث تفوق في سرعتها الطائرات المروحية.
ويتم قياس قوة دفع المحركات النفاثة في غرفة قياس ذات تجهيز خاص يسمح بضبط الظروف المحيطة بالمحركات بحيث تحاكي خصائص الهواء في طبقات الجو العليا التي يطير إليها المحرك، كما يندفع الهواء في هذه الغرفة إلى المحرك بطريقة مماثلة لما يحدث أثناء الطيران عند سرعات وارتفاعات مختلفة، وتقاس قوة دفع المحرك بوحدة الرطل أو النيوتن، وكمثال فإن المحركات الأربعة النفاثة التي تعمل في الطائرة البوينج 747 ينتج كل منها قوة دفع قدرها 51,600 رطل (230,000 نيوتن).

أنوع المحركات النفاثة
تقسم المحركات النفاثة إلى أربعة أنواع أساسية: 1- محرك توربيني نفاث، 2- محرك توربيني مروحي، 3- محرك توربيني تضاغطي مروحي، 4- محرك نفاث تضاغطي. ووجه الاختلاف بين المحركات السابقة يعتمد على مدى إسهام الدفع النفاث؛ أي دفع تيار الغازات المنطلقة من فوهة المحرك بالنسبة للدفع الكلي للمحرك. ففي المحرك التوربيني المروحي تنشأ معظم قوة الدفع من دفع مروحي، ولا تمثل قوة الدفع النفاث أيضًا النصيب الأكبر من الدفع الكلي للمحرك التوربيني التضاغطي المروحي. وهناك أيضا أوجه أخرى للاختلاف بين تلك المحركات مثل طريقة زيادة ضغط الهواء بداخل كل منها.


التوربين النفاث.


مزود بضاغط ذي ريش كالمروحة لضغط الهواء الداخل. تدفع ريش الضاغط الهواء المضغوط إلى داخل مجموعة من غرف الاحتراق، حيث يختلط الهواء المضغوط مع الوقود ويشتعل مُشكلاً بذلك غازات مشتعلة، ويتمدد الغاز بسرعة مندفعًا داخل الريش التوربينية ويجعلها تدور. يحافظ العمود الموصل بين التوربين والضاغط على دوران الضاغط. تُغطي الحارقة اللاحقة قوة دفع إضافية عن طريق تزويد الغازات الساخنة بمزيد من الوقود الذي يحترق ويزيد من الدفع النفثي. تمنع الصفائح المعدنية التي تسمى ممسكات اللهب الغاز السريع الاندفاع من إطفاء اللهب. تزود المحركات التوربينية طائرات(اف ـ 5 ـ إي) تايجر2 بالقدرة اللازمة وهي طائرات أمريكية مقاتلة كالتي تظهر في الصورة.

يعد أول أنواع المحركات التي استخدمت في تغذية الطائرات النفاثة بالقدرة على الطيران، ولاتختلف الأنواع الأخرى من المحركات النفاثة عن التوربين النفاث إلا في بعض الإضافات.
وفي هذا المحرك يتم اندفاع الهواء من خلال أنبوب إدخال ليصل إلى الضاغط. وقد أصبحت وظيفة أنبوب الإدخال أكثر تعقيدًا بعد أن زادت سرعة المحركات النفاثة في بعض الطائرات الأخرى عن سرعة الصوت، حيث تؤدي هذه الزيادة في السرعة إلى انتشار موجات تصادمية في الهواء عند دخوله المحرك. وتحد هذه الموجات التصادمية ـ بشكل كبير ـ من سريان الهواء إلى الضاغط. ويمكن للتوربين النفاث تقليل تأثير هذه الموجات بالتعديل المستمر للشكل الداخلي لأنبوب الإدخال.
ويقوم الضاغط برفع ضغط الهواء داخل المحرك، وتتشابه ضواغط المحركات التوربينية في هيكلها مع التوربينات (كمعدة دوارة). وهناك نوعان من الضواغط يمكن أن يزود بأحدهما المحرك النفاث، حيث يختلف اتجاه سريان الهواء في كل منهما، فإما أن يكون ضاغطًا محوري السريان أو ضاغطًا مركزي السريان.
ويتكون الضاغط المحوري السريان من عدة عجلات دوارة، يثبت في كل منها مجموعة من الرِّيَش الصغيرة التي تأخذ شكل الأجنحة كما في حالة المروحة الكهربائية. وهذه العجلات مرتبة على التوالي بعضها خلف بعض على امتداد عمود الضاغط الذي يدور بسرعة كبيرة حول محوره. وبين كل عجلتين متواليتين دوارتين توضع مجموعة ثابتة من الريش مثبتة في الجسم الخارجي للضاغط. وعند سريان الهواء في اتجاه يوازي محور الضاغط، ينحصر الهواء بين ريش العجلات الدوارة والريش الثابتة فيرتفع ضغطه. ويمكن أن يرتفع ضغط الهواء الخارج من بعض الضواغط المحورية إلى حوالي 30 ضعف ضغط الهواء الداخل إليها.
ويكبس ضاغط السريان المركزي الهواء في اتجاه مركز عجلة سريعة الدوران، ثم يدفع الهواء في اتجاه الطوق الخارجي للضاغط. ولا يسمح تصميم الضاغط المركزي بوجود عدة صفوف أو مراحل متتالية من العجلات كما هو الحال في الضغط المحوري. ولهذا فإن أقصى ارتفاع في ضغط الهواء يمكن أن يحدثه هذا الضاغط هو ستة أضعاف الهواء الخارجي.
وبعد خروج الهواء من الضاغط يتجه إلى غرفة الاحتراق حيث يختلط جزء منه، تتراوح نسبته بين 25 و40 في المائة من الهواء الكلي، مع الوقود الذي يحقن ويحرق فيه. وباحتراق الوقود تزداد درجة الحرارة وضغط الغازات الناتجة من الاحتراق. وباختلاط هذه الغازات مع باقي الهواء القادم من الضاغط تنخفض درجة حرارتها بدرجة معقولة. وباندفاع تلك الغازات الساخنة إلى التوربين فإنها تدفع عجلات ريش التوربين إلى الدوران، فتنتج القدرة المطلوبة بحيث تدفع الضاغط الأمامي إلى الدوران معها.
ثم تتجه غازات الاحتراق بعد دفعها للتوربين إلى فوهة المحرك. وبهذا فإن الهدف من الأجزاء المختلفة للمحرك النفاث هو رفع طاقة الغازات عند فوهة المحرك لتحقق عند انطلاقها قوة الدفع المطلوبة. وتصل سرعة الغازات عند خروجها من فوهه توربين نفاث إلى 1,600 كم في الساعة. وفي التوربينات المصممة لسرعة أقل من سرعة الصوت تضيق مساحة الفوهة تدريجيًا حتى فتحة الانطلاق. أما بالنسبه للفوهات المصممة لسرعات أكبر من سرعة الصوت فإن فوهتها تضيق ثم تتسع مرة أخرى حيث يساعد اتساع الفوهة مرة أخرى على زيادة سرعة الغازات عن سرعة الصوت عند خروجها.
تستخدم بعض التوربينات النفاثة نبائط إضافية تسمى الحارقات اللاحقة لزيادة قوة دفع المحرك في فترات زمنية قصيرة. وتوضع الحارقات اللاحقة بين التوربين وفوهة خروج الغازات. ولأن هذه الغازات تحتوي على نسبة عالية من الأكسجين، فإن هذا يتيح استغلالها في حرق كمية إضافية من الوقود في الحارقة اللاحقة مما يرفع كثيرا درجة الحرارة. وهذا يمثل إضافة طاقة أخرى إلى تلك الغازات، فتعمل على تحقيق زيادة في السرعة تحقق للمحرك قدرًا كبيرًا من قوة الدفع. ولكن استخدام الحارقة اللاحقة يؤدي إلى زيادة كبيرة في استهلاك الوقود، ولهذا يقصر استخدامها على فترات زمنية قصيرة، حيث يمكن استخدامها في الصعود السريع أو الرأسي أو أثناء القيام بالمناورات.
تستخدم الطائرات العسكرية المحركات النفاثة لإمدادها العاجل بالقدرة اللازمة لها. فالطائرة الأمريكية النفاثة (نورثروب اف ـ5 إي) تستخدم محركين من النوع التوربيني النفاث ذي الحارقة اللاحقة حيث ينتج كل منهما قوة دفع تعادل 15,600 نيوتن أو(3,500 رطل). وعند استخدام الحارقة اللاحقة تصل قوة دفع كل محرك إلى 22,200 نيوتن أو (5,000 رطل). وهناك بعض طائرات الركاب الصغيرة التي تستخدم أيضًا التوربين النفاث.


التوربين المروحي.

المروحي يتكون من مروحة ومحرك توربيني نفاث. ويستخدم المحرك التوربيني النفاث في إدارة المروحة الرئيسية التي تعطي المحرك التوربيني المروحي قوة الدفع الرئيسية للحركة. وتدور المروحة عندما تندفع غازات الاحتراق من غرفة الاحتراق لتتمدد من خلال التوربين وتدفعه إلى الدوران كي تعطي المروحة القدرة على الحركة، حيث يتصل محور التوربين بمحور دوران المروحة من خلال مجموعة من التروس. ثم تنطلق غازات الاحتراق بما تبقى فيها من طاقة من فوهة المحرك، فتعطي المحرك قدرًا ضئيلاً إضافيًا من قوة الدفع. وتعتبر المحركات التوربينية المروحية أكفأ المحركات عندما تسير عند سرعات منخفضة نسبيًا، وهي أصغر حجمًا وأخف وزناً من المحركات المكبسية التي تعطي نفس القدرة. وتستخدم المحركات التوربينية المروحية بكثرة في الأعمال التجارية الصغيرة مثل الطائرة السوبر كينج بيتش كرافت، التي تظهر في الصور المقابلة.
هو في الأساس توربين نفاث و لكن يتم استغلال معظم القدرة الناتجة منه في إدارة مروحة. ويتشابه مع التوربين النفاث في أنه يتكون من ضاغط ثم غرفة احتراق ثم توربين، ولكن يضاف إليه توربين آخر في مؤخرة التوربين الذي يدوّر الضاغط. وتدير غازات الاحتراق هذا التوربين الثاني، ويسمى توربين القدرة الذي يغذي بالقدرة الناتجة منه عمود دوران المروحة من خلال صندوق تروس.
وبعد استنفاد الجزء الأكبر من طاقة غازات الاحتراق في إدارة توربين القدرة الذي يدير المروحة، يمكن استغلال ما تبقى منها من طاقه باندفاعها بسرعة محدودة من فوهة المحرك، فتضيف قدرًا ضئيلاً من قوة الدفع إلى الدفع المروحي، حيث يكون الاعتماد الأساسي في هذه الحالة على الدفع الناشئ من دوران المروحة.
تتميز التوربينات المروحية بالسلاسة في إدارتها، كما أنها اقتصادية في استهلاكها، وتتميز أيضا بقلة الأعطال، ولكن يعيبها عدم القدرة على الطيران بسرعة تزيد على سرعة الصوت. وهي أصغر حجما و أخف وزنا من المحركات المكبسية التي تعطي نفس القدرة، ولهذا فإنها تستخدم في طائرات النقل الضخمة، وكذلك طائرات الركاب الصغيرة والمتوسطة، كما تستخدم في إدارة مراوح الطائرات المروحية، وتسمى في هذه الحالة التوربينات الغازية.


التوربين التضاغطي المروحي.

: يشبه المحرك التوربيني النفاث ولكنه يتميز بوجود ضاغط مروحي أمامي على شكل مروحة ضخمة عند مدخل الهواء . ويمر معظم الهواء المضغوط حول المحرك منتجًا قوة دفع. ويدخل ما تبقى من الهواء مندفعاً إلى محرك توربيني يقوم بنفـس أداء المـحرك التـوربيني النفاث للحصول على قوة الدفع النفاث نتيجة اندفاع غازات الاحتراق من فوهة المحرك. ويتكون هذا المحرك من ضاغط وغرف احتراق ونوعين من التوربينات، الأولى تعطي القدرة اللازمة لإدارة الضاغط والثانية، وتسمى التوربين المروحي، تدير المروحة. وباستخدام طريقتين في الحصول على قوة الدفع، فإنه يمكن للمحرك التوربيني التضاغطي تحقيق قوة دفع أكبر من المحرك التوربيني النفاث عند سرعات أقل، وهي أيضا تتميز بالأداء الهادئ وبمعدل أقل في استخدام الوقود. ويعتبر المحرك التوربيني التضاغطي أكثر المحركات انتشارًا، وتعتمد عليه العديد من طائرات خطوط الطيران التجارية مثل الطائرة DC-10 في الصورة المقابلة.
هو أيضا توربين نفاث يستخدم جزءًا من قدرته في إدارة ضاغط مروحي كبير موضوع في مقدمة المحرك داخل ظرف كبير يحيط بهذا الضاغط. يدور هذا الضاغط سريعًا مدفوعًا بوساطة توربين مشابه للمستخدم في التوربين المروحي. ويُدْخِل إلى المحرك كمية من الهواء، حيث يتم ضغطه، ثم يحقن فيه الوقود ويُحرَق، ثم يمر على التوربين فيعطي أثناء خروجه من فوهة المحرك قدرًا من قوة الدفع، إلا أن الجزء الأكبر من الهواء الذي يدفعه الضاغط المروحي يمر حول المحرك. وباستغلال اندفاعه إلى الخلف فإنه ينتج دفعًا آخر يضاف إلى دفع غازات الاحتراق. وباستخدام هاتين الطريقتين للحصول على قوة دفع من مصدرين مختلفين، فإن كفاءة هذا التوربين يمكن أن تقترب من كفاءة التوربين المروحي دون الإخلال بقدرة التوربينات النفاثة على الطيران بسرعة أكبر من سرعة الصوت. ويمكن تجهيز هذه التوربينات أيضًا بحارقة لاحقة تعمل على رفع قوة دفع هذه المحركات عند اللزوم.
من المميزات التي يحققها استخدام هذا النوع من المحركات انخفاض درجة الضوضاء التي يحدثها أثناء التشغيل، حيث يعتمد مستوى الضوضاء في المحركات النفاثة على سرعة خروج تيار غازات العادم من فوهة المحرك. وحيث إن سرعة خروج الغازات من التوربين ذي الضاغط المروحي تقل عن سرعة الغازات من التوربين النفاث، فإن أداء هذا التوربين أكثر هدوءًا من التوربين النفاث.
وتعد التوربينات ذات الضاغط المروحي أكثر المحركات النفاثة شيوعًا. فهي التي تستخدم في الطائرات البوينج 747، كما تستخدم في كل الطائرات الكبيرة التي تعمل على الخطوط الجوية، وفي تغذية الطائرات العسكرية النفاثة بالقدرة اللازمة لها.


المحرك النفاث التضاغطي.

ينبغي رفع سرعته إلى سرعة تفوق سرعة الصوت، وذلك باستخدام صــاروخ أو محــرك نفــاث آخــر قــبل تشــغيله. يندفع الهواء داخل المحرك من خلال مداخل الهواء. تنخفض سرعة الهواء عندما يقترب من غرفة الاحتراق حيث يتم ضغطه باندفاع مزيد من الهواء من المدخل الخلفي. يختلط الهواء مع الوقود الذي تضخه حاقنة الوقود داخل غرفة الاحتراق، ثم تتم عملية الاحتراق. ينفث الضغط الذي ينتج عن الوقود المحترق والهواء الغازات خارج فوهة النفاث ويدير المحرك إلى الأمام. يعمل المحرك النفاث التضاغطي بطريقة أفضل أثناء السرعات العالية. ولهذا السبب استعمل بشكل رئيسي في إدارة الصواريخ الموجهه مثل الذي يظهر في الصورة.
يعد أبسط أنواع المحركات النفاثة. وهو بصفة أساسية محرك توربيني نفاث بدون توربين أو ضاغط، حيث يدخل الهواء إلى المحرك مع الطيران. وأثناء مروره في مساره في أنبوب الإدخال يتم إبطاء تدفقه، فيرتفع ضغط الهواء داخل المحرك بالتأثير التراكمي؛ أي باستخدام اندفاع الهواء الجوي إلى المحرك في الضغط على الهواء عند المدخل أثناء طيران المحرك بسرعات عالية. ثم تحقن كمية من الوقود في هذا الهواء المضغوط، وبهذا يمكن الحصول على غازات ذات طاقة عالية، فيتم زيادة سرعتها لتطلق من فوهة المحرك محققة قوة الدفع المطلوبة. ونتيجة بساطة مكونات النفاث التضاغطي فقد أطلق بعض العلماء عليه اسم الشعلة الطائرة. ولا تستطيع النفاثات التضاغطية أن تؤدي عملها عند طيرانها بسرعة أقل من سرعة الصوت. ويعد هذا عيبًا أساسيًا في استخدامها، حيث يجب أن تفوق سرعتها سرعة الصوت حتى يحدث عند مدخل الهواء تأثير تضاغطي يكون قادرا على رفع الضغط بداخلها إلى القدر الذي يسمح للمحرك بأن يؤدي عمله. ولهذا يلزم استخدام صاروخ أو محرك توربيني آخر يدفع المحرك النفاث التضاغطي في البداية حتى يصل إلى سرعة تشغيل تفوق سرعة الصوت.
عمومًا فإن المحرك النفاث التضاغطي لا يستخدم في الطائرات، ولكن له تطبيقات خاصة مثل استخدامه في دفع المعدة الأمريكية المسماة تيليدين ريان فيربراند. وهي تستخدم كهدف طائر يسير بسرعة تفوق سرعة الصوت، ويتم التحكم فيه عن بعد ليحاكي القذائف المضادة للقطع البحرية أثناء التدريب.

تطور المحركات النفاثة
يتكون المحرك النفاث الصغير الذي قام العالم هيرو الإسكندري بإنشائه عام 60 م من كرة جوفاء يتدفق من داخلها بخار ماء من خلال فوهتين في جهتين متقابلتين منها، ويؤدي انطلاق البخار من هاتين الفوهتين إلى دورانها بنفس الطريقة التي يؤدي بها اندفاع الماء من رشاشات الري المحورية إلى دورانها حول نفسها. وقد زادت معدلات تطور المحرك النفاث واستخداماته في دفع الطائرات نتيجة للتوتر المتزايد الذي أدى إلى قيام الحرب العالمية الثانية (1939 - 1945م). فقد تم طيران أول طائرة نفاثة في ألمانيا وأطلق عليها اسم هينكل عام 1939م وكانت تُغَذَّى بمحرك نفاث وضع تصميمه الفيزيائي الألماني هانز فون أوهين، وفي إيطاليا تم بناء وطيران الطائرة النفاثة كابروني ـ كامبيني (س س 2) عام 1940م.
ولم تتمكن أي من هاتين الطائرتين من إثبات قدرتهما العملية، وسرعان ما ظهرت الطائرة النفاثة جلوستر 28/39 الأكثر تطورًا، وقد لاقت نجاحًا أكثر من سابقتيها على يد فرانك ويتل، وهو من ضباط السلاح الجوي الملكي في بريطانيا، وقد تم أول طيران عملي لها عام 1941م.
وقد كان لألمانيا السبق في استخدام المحركات النفاثة لدفع القذائف الموجهة أثناء الحرب العالمية الثانية، ثم قامت الولايات المتحدة في عام 1947م ببناء الطائرة بل إكس ـ1، وهي أول طائرة تطير بسرعة تفوق سرعة الصوت باستخدام الدفع الصاروخي.
بدأ استخدام التوربينات النفاثة والتوربينات المروحية في تغذية طائرات الخطوط الجوية التجارية بالقدرة خلال الخمسينيات من القرن العشرين. وفي نفس الوقت اعتمد دفع القذائف الموجهة الأمريكية مثل البومارك والتولوز على النفاثات التضاغطية. وفي الستينيات حلت التوربينات التضاغطية المروحية محل التوربينات النفاثة في الطائرات التجارية والعسكرية.
وقد انتشر استخدام التوربينات التضاغطية المروحية خلال السبعينيات نتيجة ارتفاع كفاءتها وهدوء تشغيلها. وقد أجريت أبحاث مكثفة خلال السبعينيات والثمانينيات من القرن العشرين لتطوير عمل المحرك النفاث التضاغطي كوحدة دفع للقذائف الموجهة. ويعمل الباحثون، اليوم، على زيادة كفاءة المحركات النفاثة مع تقليل تكلفتها والحد من درجة التلوث الذي ينبعث منها.


يتبع

الغراب الأسود 20 - 11 - 2010 02:28 AM

الديناميكا الهوائية
تُعنَى بدراسة القُوى المؤثرة على جسم ما أثناء حركته في الهواء أو أي نوع آخر من الغازات. وتؤثر قُوى الديناميكا الهوائية على الطائرات وأية أجسام أُخرى متحركة في الهواء. ويدرس العلماء والمهندسون قُوى الديناميكا الهوائية، ويهتمون بها لأنها هي القُوى التي تؤثر في حركة الأجسام.

وقد درس الأَخَوان رايت الديناميكا الهوائية قبل أن ينجحا في صنع أول طائرة تتمكن فعليًا من الطيران. وفي الوقت الراهن، يستخدم صنّاع الطائرات أساسيات الديناميكا الهوائية في تصميم جميع أنواع الطائرات. وتنطبق أساسيات الديناميكا الهوائية نفسها أيضًا على انسياب الهواء أثناء مروره حول المباني والجسور. ونتيجة لذلك، فعلى المهندسين المعماريين استخدام مبادئ الديناميكا الهوائية للتأكد من صمود ناطحات السحاب ومقاومتها لقوة الرياح. ومن هذا المنطلق، فإن الديناميكا الهوائية تساعد مصمِّمي السيارات في تحسين أدائها.

يستخدم المهندسون أيضًا أساسيات علم الديناميكا الهوائية في تصميم المضخات والمُكرْبنات والتوربينات (العَنَفات) الغازية. ويعد علم الديناميكا الهوائية جزءًا من فرع الهندسة المعروف باسم ديناميكا الموائع.

هناك بعض أنواع الطيران التي لايدخل فيها علم الديناميكا الهوائية. ومن أمثلة ذلك حركة سفن الفضاء السابحة في الفضاء الخارجي التي لاتتحكم فيها أساسيات علم الديناميكا الهوائية، ويرجع ذلك لعدم وجود هواء يولد قُوى الديناميكا الهوائية. وعلى الرغم من ذلك، فإن سفن الفضاء تخضع لعلم الديناميكا الهوائية أثناء طيرانها خلال الغلاف الأرضي أو أثناء مرورها في مجالات بعض الكواكب الأخرى.

قواعد الديناميكا الهوائية
ترتبط معظم قواعد الديناميكا الهوائية بقوتي الديناميكا الهوائية الأساسيتين وهما: الرَّفْع والسَّحب.

الرفع
قوة ديناميكية هوائية تنتج عن حركة سطح انسيابي رافع كجناح الطائرة في الهواء. وتؤثر قوة الرفع بزاوية قائمة بالنسبة لاتجاه الحركة. وتعطي قوة الرفع الطائرة المقدرة على الارتفاع والبقاء على السرعة نفسها في الهواء. ويُحدث السطح الانسيابي عند حركته في الهواء قوة رفع لأن القوة الناتجة تكون ذات ضغط أكبر على السطح السفلي للسطح الانسيابي مقارنة بالضغط الناتج عن السطح العلوي. وينتج عن الاختلاف في الضغط أعلى السطح الانسيابي وأسفله اختلاف في سرعة سريان الهواء على السطحين، وذلك طبقًا للمبادئ التي اكتشفها دانيال برنولي، وهو عالم رياضيات سويسري، والتي تنص على أن ضغط السائل يقل مع زيادة سرعته.

قاعدة بِرْنُولي، .
قاعدة برنولي نظرية علمية تعرف أيضًا باسم قانون برنولي أو نظرية برنولي. تنص القاعدة على أن الطاقة تظل محفوظة في الموائع المتحركة (سائلة أو غازية). فإذا كان المائع يتحرك أفقيًا يقل الضغط كلما زادت سرعة المائع ويزداد كلما قلت السرعة. فمثلاً: يتحرك الماء من خلال الجزء الضيق في أنبوبة أفقية بسرعة أكبر مما هو عليه في الجزء الأوسع. وتفترض قاعدة برنولي أن الضغط ينخفض لأدنى درجة عندما تصل السرعة لأقصى مدى. وقاعدة برنولي نسبة إلى دانيال برنولي (1700- 1782م)، وهو عالم رياضيات سويسري. وتفسر قاعدة برنولي كيف تولِّد أجنحة الطائرات قوة الدفع لأعلى (الإقلاع) وكيف تدور الكرة في الهواء عندما تُضرب. فجناح الطائرة يُصَمَّم بطريقة تجعل ضغط الهواء أسفل الجناح أكبر من الضغط أعلاه فيندفع الجناح لأعلى. وإن قذفت الكرة لتدور دورات حلزونية يكون ضغط الهواء أكبر في أحد جوانب الكرة منه في الآخر. ويولد الفرق الناتج في ضغط الهواء قوة اندفاع في اتجاه منطقة الضغط المنخفض فتنطلق الكرة في خط متعرج.

وللسطح المنساب النموذجي حافة متقدمة أمامية مدورة وحافة خلفية حادة. وعند اقتراب الهواء المنساب من الحافة المتقدمة، فإنه يتشعب ويتفرق ليتجه نحو السطح المنساب. وللحصول على قوة رفع، لابد أن يكون انسياب الهواء حول السطح العلوي والسطح السفلي للسطح الانسيابي عديم التناظر (غير متماثل)، أي ليست له أيّ منظومة محددة. ويمكن أن يتولد الانسياب عديم التناظر عند استعمال سطح انسيابي ذي شكل منحن. ويُطلق على الانحناء في هذه الحالة اسم التقوس. ويحدث الانسياب عديم التناظر عند التقاء سطح انسيابي رافع مع الهواء بزاوية معينة. ولابد من تزاوج الانسيابين واندماجهما بأسلوب سلس منتظم عند تركهما للحافة الخلفية. وقد اكتشف هذا الشرط عالم الرياضيات الألماني ك. و. كوتا. وينتج عن الشرط الذي وضعه كوتا وانسياب الهواء عديم التناظر جريان الهواء بسرعة أعلى على السطح العلوي للسطح الانسيابي مقارنة بالسطح السفلي له، وهكذا يقل ضغط الهواء على السطح العلوي مقارنة بالسطح السفلي. ونتيجة لذلك، يُرفَع السطح الانسيابي إلى أعلى في الهواء.

ويمكن شرح قوة الرفع أيضًا بمقدرة السطح الانسيابي على تحويل اتجاه الهواء إلى أسفل. ويحول السطح الانسيابي اتجاه الهواء من خلال زاوية التقوس بالإضافة إلى لقاء الهواء عند زاوية معينة. وينص القانون الثالث من قوانين الحركة الذي وضعه العالم الإنجليزي السير إسحق نيوتن على أن كل فعل له رد فعل مساو له في المقدار ومضاد له في الاتجاه. وعندما يقوم السطح المنساب بتحويل اتجاه الهواء إلى أسفل، فإن رد الفعل لهذه الحركة يدفع هذا السطح المنساب إلى أعلى ـ ومن ثم ينتج قوة الرفع.

تعتمد كمية الرفع الناتجة عن الجناح أساسًا على زاوية الهبوب ونبائط (معدات أو أجهزة) الرفع العالي كما يؤثر أيضًا كل من كثافة الهواء ومساحة السطح وسرعة الجناح على مقدار الرفع.

زاوية الهبوب.
هي الزاوية التي يحدثها الجناح مع الهواء المنساب المار به. ويمكن للطيار تغيير زاوية الهبوب بتغيير وضع الطائرة (موضع الطائرة في الفضاء). ويمكن إلى حد ما زيادة قوة الرفع الناتجة عن الجناح بزيادة زاوية الهبوب. وأي زيادة في قوة الرفع تعني إمكانية زيادة سرعة صعود الطائرة أو التحليق بسرعة أبطأ.

تؤدي زاوية الهبوب دورًا مهمًا في سلامة الطيران. ولايمكن للهوا ء أن ينساب بسلاسة حول الجناح إذا أصبحت زاوية الهبوب حادة أو شديدة الانحدار. وإذا أصبحت زاوية الهبوب حادة فبدلاً من انسياب الهواء بسلاسة، فإنه ينقطع فجأة ويصبح في صورة دوامات صغيرة، يطلق عليها اسم الدوامات الهوائية، على الجناح . وتقلل هذه الدوامات من قوة الرفع إلى درجة كبيرة جدًا، وتجعل الطائرة تهبط لأسفل نحو الأرض. ويطلق على هذه الحالة اسم الهَوَيان. ويمكن أن تتحطم الطائرة مالم تخفض زاوية الهبوب على وجه السرعة. وتحلق الطائرة بزاوية هبوب تتراوح بين 4 درجات و15 درجة، ويمكن أن تهوي الطائرة إذا أصبحت الزاوية أكثر من 15 أو 20 درجة.

نبائط الرفع العالي.
تعتمد قوة الرفع للسطح الانسيابي على سرعة الجناح في الهواء. وإنْ لم يتحرك الجناح بسرعة كافية، فإن الاختلاف في الضغط بين أسفل الجناح وأعلاه لن يؤدي إلى توليد قوة الرفع الكافية للاحتفاظ بالطائرة في الهواء. وأثناء عمليات الهبوط والإقلاع، يحاول الطيارون أن يطيروا بأقل سرعة ممكنة، ولهذا تزود الطائرة بأجزاء خاصة يطلق عليها نبائط الرفع العالي لتمد الطائرة بقوة رفع كافية لكي تطير بأقل سرعة ممكنة. وتشتمل هذه النبائط على كل من:1- قلابة 2- سدفة 3- شق خدي.

والقلابة مقطع متصل بمفصلات في ظهر كل جناح. وفي أثناء رحلة الطيران الاعتيادية، تتوافق القلابة بسلاسة مع الجناح. ويقوم الطيار بإنزال القلابات وذلك للهبوط، وفي بعض الأحيان أيضًا أثناء الإقلاع. وعند إنزال القلابات، فإنها تزيد من نسبة التقوّس للجناح، ويعطي ذلك قوة رفع للطائرة، وبالتالي يساعد على تخفيض سرعة الطائرة استعدادًا للهبوط.

والسدفة جزء متصل بمفصل بالقرب من مقدمة طرف كل جناح. وعندما تخفض الطائرة من سرعتها، فإن السدفة تتحرك بصورة تلقائية إلى الأمام لزيادة التقوس للجناح، وبالتالي تعمل السدفة على زيادة قوة الرَّفْع.

والشق الخدي فتحة على طول الحافة الأمامية للجناح. ويساعد الشق الخدي الهواء في الانسياب بسلاسة أعلى الجناح، وبهذا يمكن للطائرة أن تطير بزاوية هبوب كبيرة دون أن تهوي، وبالتالي فإن زواية الهبوب هذه تزيد قوة الرفع.


أنواع السَّحب.


سحب مرتفع


سحب متوسط


سحب منخفض
قوة تخفف من حركة شيء يمر خلال الهواء. وكثير من الأشياء المتحركة يتسبب في تحويل جريان الهواء حوله إلى دوامة. وتحدث الدوامات سحبًا شديدًا. وبعض الأشياء مثل جناح الطائرة يواجه مقاومة ضعيفة لأن شكل الجناح لا يساعد على تشكيل الدوامات.
قوة ديناميكية هوائية تقاوم الحركة الأمامية للجسم.
ويؤثر شكل الجسم بقدر كبير على مقدار السحب. ويطلق على الأجسام التي يتولد عنها أقل قدر من السحب أجسام الخط الانسيابي أو الأجسام الخالية من الديناميكية الهوائية. ويبني المصممون الطائرات بحيث يكون السحب فيها أقل قدر ممكن. وتحتاج الطائرات ذات السحب المنخفض إلى محركات أقل طاقة، كما يحسن السحب المنخفض أيضًا من أداء الطائرة. وينطبق هذا المفهوم على الناقلات والمركبات والقطارات لأنها تواجه سحبًا.

ويوجد نوعان من السحب ـ السحب الاحتكاكي والسحب الشكلي، وتؤثر هاتان المقاومتان على جميع الأجسام المتحركة. كما يوجد نوع ثالث من السحب يطلق عليه السحب المحرِّض. وهو يؤثر فقط على الأجسام أثناء عملية الرفع. ويظل هناك نوع رابع من السحب يظهر فقط عندما تطير الطائرة بسرعة تفوق سرعة الصوت.

السحب الاحتكاكي
يتولد مباشرة بين سطح الجسم وطبقة الهواء الرقيقة المتاخمة له ويطلق على طبقة الهواء تلك اسم الطبقة المتاخمة. ويحدث الاحتكاك في جميع الظروف عندما تنزلق طبقة من وسط مائع على طبقة أخرى منه. وتتحرك جزيئات الهواء في الطبقة المتاخمة لأي جسم بإحدى طريقتين: 1- مسارات منتظمة موازية للسطح، أو 2- مسارات غير منتظمة. ويطلق المهندسون على الحركة المنتظمة للجزيئات اسم الانسياب الطبقي، بينما يعرف السريان غير المنتظم باسم الدفق المضطرب. ويزيد الدفق المضطرب من السحب الاحتكاكي.

تكون الطبقة المتاخمة في صورة الانسياب الطبقي في مقدمة أي جسم متحرك. ويمكن أن يصبح انسياب الهواء في صورة دفق مضطرب عند بعض النقاط عندما يتحرك الهواء على طول الجسم. ويحاول مصممو الطائرات تأخير تغير السريان من حالة الانسياب الطبقي إلى الدفق المضطرب لأطول فترة ممكنة، وذلك لتخفيض السحب الاحتكاكي إلى أقل قدر ممكن، وإحدى الطرق المتبعة لذلك هي جعل السطح المتحرك أملس ناعمًا قدرالمستطاع.

السحب الشكلي
ينتج عندما ينفصل الهواء المنساب عند مروره بجسم ما منتجًا دوَّامات هوائية. وهي تمتص طاقتها من الجسم مسببةً السحب الشكلي، وبهذا تقلل من سرعة الجسم المتحرك. ويحدث السحب الشكلي في الأجسام ذات الأشكال عديمة الخط الانسيابي. وعلى سبيل المثال، يشعر سائق سيارة تسير خلف شاحنة كبيرة تتحرك بسرعة شديدة أن سيارته تهتز بالدوامات الهوائية الناتجة عن الشاحنة غير ذات الخط الانسيابي.

يُخفض المهندسون من السحب الشكلي من خلال تصميم أجسام ذات خطوط انسيابية. كما يضعون مولدات الدوامات على أجنحة الطائرة. ومولدات الدوامات أسطح انسيابية رافعة تُلصق على هيئة صفوف طويلة أعلى الجناح الرئيسي. وتنتج مولدات الدوامات قدرًا قليلاً من الاضطراب أو التشويش في الطبقة المتاخمة التي تحفظها من الانفصال.

السحب المحرِّض
ويُطلق عليه أيضًا اسم السحب الناتج. وينشأ السحب المحرض نتيجة الفرق بين الضغط أعلى الجناح وأسفله الناتج عن ميل الهواء للانسياب في اتجاه عكسي على طول الجناح. ويميل الهواء على طول السطح السفلي للجناح للاتجاه نحو الخارج، بينما يميل الهواء على السطح العلوي للجناح للاتجاه نحو الداخل. ويطلق مهندسو الطيران على هذه الحركة اسم الانسياب في اتجاه مستقيم. ويؤدي هذا الانسياب إلى تكوّن دُوامة هوائية خلف طرف كل جناح. ويحاول التدويم الهوائي في الدوامة دفع الطائرة للخلف وتسبب هذه الظاهرة خطورة على أية طائرة تحلّق بالقرب من مؤخرة هذه الطائرة.

يخفِّض مصصمو الطائرات مقدار السحب المحرَّض بالتحكم في أجنحة الطائرة. فهم يصممون الجناح بحيث يكون طويلاً وضيقًا، كما يمكن للمصممين أيضًا وضع شرائح من فلز ما على السطح العلوي للأجنحة لمنع الانسياب في الاتجاه المستقيم.

الموجات الصدمية والفرقعات الصوتية


الدوي الصوتي


الطائرة التي تطير بسرعة بطيئة تحدث اضطرابات في ضغط الهواء ، وهذه الاضطرابات تسير بسرعة الصوت، وهكذا تتحرك أمام الطائرة.


الطائرة التي تطير بسرعة الصوت أي بنفس سرعة الاضطرابات الهوائية التي تسببها، ينتج عنها تراكم تلك الاضطرابات في مقدمة الطائرة فتؤدي إلى حدوث موجه صدمية.


الطائرة التي تخترق حاجز سرعة الصوت تتسبب في إحداث موجه صدمية تصل إلى الأرض حيث يسمع الناس على الأرض دويًا صوتيًا حالما تصل إليهم تلك الموجة.

تولد الطائرة المتحركة اضطرابات في ضغط الهواء في المناطق التي تمر بها. وتنتج اضطرابات الضغط من سريان الهواء وانسيابه حول أجنحة الطائرة وجسم الطائرة (الهيكل). وتنتقل اضطرابات الضغط مبتعدة عن الطائرة تمامًا، كما تنتقل الموجات في البركة من موضع قذف حجر في الماء الساكن. وتنتقل اضطرابات الضغط بسرعة الصوت ـ أي بنحو 1,225كم/س عند مستوى سطح البحر. والصوت هو اضطرابات الضغط وتشويشه، ومن أنواع الأصوات الأخرى الناتجة عن اضطرابات الهواء الموجات الصدمية والفرقعات الصوتية (دوي اختراق حاجز الصوت).

تنتقل اضطرابات الضغط الناتجة عن تحليق الطائرة بسرعة أقل من سرعة الصوت بسرعة أعلى من سرعة الطائرة نفسها. ولهذا فإن صوت الطائرة في هذه الحالة يتقدم على الطائرة نفسها، ويسمع الناس على الأرض صوت الطائرة قبل رؤيتهم إياها. أما صوت الطائرة التي تطير بسرعة أسرع من سرعة الصوت فلايسمع صوتها على الأرض إلا بعد مرور الطائرة فوق هذا الموقع.

يستخدم المهندسون والطيارون الأعداد الماخيَّة لوصف سرعة الطائرات التي تطير بسرعة قريبة أو أعلى من سرعة الصوت. والطائرة التي تحلق بسرعة تعادل ضعفي سرعة الصوت يعني أنها تطير بسرعة ماخ 2. وتستخدم أعداد ماخ لأن سرعة الصوت في الهواء ليست مقدارًا ثابتًا على الدوام، حيث تعتمد سرعة الصوت على ارتفاع الطائرة ودرجة حرارة الهواء في الجو المحيط. ينتقل الصوت عند مستوى سطح البحر وعند درجة حرارة 15°م بسرعة تبلغ 1,190 كم/س. وتقل سرعة الصوت عند الارتفاعات العالية حيث تكون درجة الحرارة أقل من درجة الحرارة عند مستوى سطـح البـحر. وعلى سبيـل المثـال، ينـتـقل الصـوت عنـد ارتفاع 12,000م فوق سطح البحر بسرعة 1,060كم/س.

ويمكن الحصول على العدد الماخي بقسمة سرعة الطائرة على سرعة الصوت عند مستوى ارتفاع الطائرة. وعلى سبيل المثال، فإن العدد الماخي لطائرة تطير بسرعة 1,190 كم/س عند ارتفاع 12,000م هي 1,190 كم/س مقسومة على 1,060كم/س أو 1,12 ماخ. ويعرف الطيران بسرعة أعلى من ماخ واحد، وهي سرعة الصوت باسم الطيران فوق الصوتي. أما الطيران بسرعة أقل من ماخ واحد فيعرف باسم الطيران الأبطأ من الصوت.

الموجات الصدمية.
هي اضطرابات الضغط الشديدة الناتجة عن طيران الطائرة بسرعة أعلى من سرعة الصوت. ولايمكن لاضطرابات الضغط أن تتحرك أمام الطائرة لأن الاضطرابات تنتقل بسرعة أبطأ من سرعة الطائرة. وتتراكم اضطرابات الضغط مكونة موجة صدمية، وتتداخل الموجات الصدمية بعضها ببعض في مقدمة الطائرة ومؤخرتها.

تزيد الموجات الصدمية من قوة السحب على الطائرة. وتُصمَّم الطائرات الأسرع من الصوت بمميزات تساعدها في تخفيض قوة السحب، وأهم سمات التصميم في هذه الطائرة أن تكون ذات مقدمة مدببة حادة، وحواف أجنحتها حادة ورقيقة مما يمكنها من اختراق الهواء بسهولة. ويمكن للأجنحة أن تأخذ زوايا في الاتجاه الخلفي من جسم الطائرة لتقليل قوة السحب بصورة أكبر. وتحتاج الطائرات الأسرع من الصوت إلى نفاثات قوية أو محركات صاروخية للتغلب على قوة السحب العالية الناتجة عن الموجات الصدمية.

الفرقعة الصوتية.
بعد طيران الطائرة الأسرع من الصوت على مكان ما، يسمع الناس في هذا المكان دويًا أو (فرقعة). وهذا الصوت المسمى بالفرقعة الصوتية يماثل صوت الانفجار. وتنتج الفرقعات الصوتية عن الموجات الصدمية من الطائرة. ويمكن سماع انفجارين صوتيين صادرين من الطائرة نفسها بفاصل دقيقة أو دقيقتين بين كل انفجار وآخر. وتولد الطائرة التي تطير بسرعة أعلى من سرعة الصوت في الأقل موجتين صدميتين إحداهما في مقدمة الطائرة والثانية في مؤخرتها. لكن يمكن أن تصل كلتا الموجتين في وقت متقارب بحيث يسمع دوي صوتي واحد.

يمكن أن تكون الفرقعات الصوتية قوية إلى درجة تؤدي إلى تحطيم زجاج النوافذ وتصدع المباني. وتعتمد قوتها على العدد الماخي لطيران الطائرة وارتفاعها وشكلها. وكلما زادت السرعة وانخفض مستوى الطيران زادت قوة الموجة الصدمية وارتفعت الفرقعة الصوتية.

نبذة تاريخة
رواد علم الديناميكا الهوائية. يأتي في أول هذه القائمة الفنان والعالم الإيطالي ليوناردو دافينشي، ويعد أول إنسان درس حركة تحليق الطيور بأسلوب علمي. وقد رسم دافينشي في الثمانينيات من القرن الخامس عشر الميلادي رسومًا توضيحية تبين حركة الطيور أثناء طيرانها ورسومًا تخطيطية لآلات يمكنها الطيران.

وفي أواخر القرن السابع عشر الميلادي، قام العالم الإنجليزي السير إسحق نيوتن بوضع القانون الرابع من النظرية الأساسية لمقاومة الهواء. وقد شرح نيوتن في هذا القانون ماتفعله القُوى المؤثرة بين الجسم ووسط مائع مثل الهواء. ولاحظ عدم وجود أي فرق بين تحرك الجسم خلال الوسط المائع وحركة الوسط المائع حول الجسم.

ولم يبدأ الناس في استخدام قواعد الديناميكا الهوائية والاستفادة منها إلا في القرن التاسع عشر الميلادي؛ وذلك عند محاولة الإنسان الطيران مستخدمًا طائرة أثقل من الهواء. وفي عام 1853م، تمكن السير جورج كايلي في إنجلترا من بناء أول طائرة شراعية، وقد حملت هذه الطائرة سائق عربة السير كايلي الذي ركبها مضطرًا ليعبر واديًا صغيرًا. وقد أصبح أوتو ليلينتال، وهو مهندس ألماني، أول من قاد طائرة شراعية بالفعل، وكان ذلك عام 1891م. وفي عام 1891م أيضًا نشر العالم الأمريكي صمويل لانجلي أول ورقة بحث علمي عن علم الديناميكا الهوائية بعنوان تجارب في الديناميكا الهوائية. وقد بنى نموذج طائرة تُدفع بالبخار، نجحت في الطيران فعلاً، ولكن عند تطبيق قواعد النموذج الصغير نفسها على طائرة بمقياس كبير تعمل بقوة النفط تحطمت. وكانت محاولات لانجلي قبل فترة قليلة من نجاح الأخوين رايت في الطيران مستخدمين نموذجًا للطائرة المروحية عام 1903م. وقد استخدم الأخوان رايت معدات مثل الأنفاق الهوائية ونظم موازين مختلفة لتقدير قوتي الرفع والسحب.

وفي بداية القرن العشرين، طور المهندس الألماني لودفيج براندتل نظرية الطبقة المتاخمة للسحب، كما أسهم في فهمنا لقوة الرفع.

علم الديناميكا الهوائية حاليًا.
أظهر استخدام الطائرات في الحرب العالمية الأولى في الفترة من 1914م - 1918م، وكذلك في الحرب العالمية الثانية في الفترة من 1939م - 1945م الحاجة إلى أبحاث متقدمة وعديدة في مجال علم الديناميكا الهوائية. وبعد تطوير الطائرات النفاثة في الأربعينيات من القرن العشرين، بدأ المهندسون بدراسة الطيران الأسرع من الصوت. وقد شهد عام 1947م أول طائرة تطير بسرعة أسرع من الصوت مستخدمة في ذلك قوة الدفع الصاروخية.

وفي الخمسينيات من القرن العشرين، طور مصممو الطائرات مقدمات الطائرات لتصبح حادة كالسكين والأجنحة ذات الامتداد التراجعي، وكل ذلك لتخفيض قوة السحب. وفي بداية الستينيات من القرن الحالي توصل المهندسون إلى أجنحة ذات امتداد تراجعي يمكنها الطيران المستقيم والمستوي. ومكّنت الأجنحة متغيرة الاتجاه من الطيران بسرعات عالية، كما وفَّرت الأمان ويسَّرت الهبوط بسرعات منخفضة. وفي بداية السبعينيات من القرن العشرين عملت كل من فرنسا وبريطانيا معًا، والاتحاد السوفييتي (السابق) منفردًا، وتمكنت هذه الدول من بناء الطائرات الأسرع من الصوت.

بدأت الولايات المتحدة الأمريكية في الثمانينيات من القرن العشرين الميلادي اختبارات على الطائرة إكس ـ 29 المجهزة بأجنحة ذات امتداد تقدمي. وكان من المتوقع أن يعطي التصميم ثباتًا أكبر للطائرة وقدرة أفضل للمناورة، وخاصة عند زوايا الهبوب العالية. وفي عام 1986م، بدأت الولايات المتحدة الأمريكية برنامج أبحاث عن طائرة الفضاء الخارجي، ويهدف هذا البرنامج إلى بناء طائرة يمكنها الإقلاع من مطار عادي، وتطير بسرعة أعلى من سرعة الصوت مرات عديدة (ماخ 5 أو أعلى) إلى المدار الأرضي ثم تعود إلى الأرض لتهبط في المطار نفسه.

على الرغم من تقدم علم الديناميكا الهوائية وازدهاره، إلا أنه مازال هناك عدد من المشكلات الخاصة بالديناميكا الهوائية التي لم تحلّ حتى الآن. وتشمل هذه الصعوبات: 1- تصميمات جديدة بصورة أفضل للطائرات فائقة السرعة تقل فيها انفجارات جدار الصوت 2- تطوير طائرات ذات مقاومـــة سحب منخفضـــة لأسباب اقتصاديـــة بالطيران 3ـ تحسين تصميم المحركات النفاثة لتخفيض الضوضاء الناتجة عن الطائرات.


يتبع

الغراب الأسود 20 - 11 - 2010 02:29 AM

وفي عام 1947م، قامت الطائرة الصاروخية الأمريكية بيل إكس ـ1 بإجراء أول طيران فوق صوتي في التاريخ، وقاد الطائرة تشارلز ييجر العقيد طيار بالقوات الجوية الأمريكية. وفي عام 1962م، حلقت الطائرة الصاروخية الأمريكية إكس ـ 15 على ارتفاع قدره 95,936م، أي أكثر من 80كم فوق سطح الأرض، مما أهّل الطيار الرائد روبرت م. وايت التابع للقوات الجوية الأمريكية للقب رائد فضاء. وفيما بعد، تمكنت الطائرة إكس ـ 15 من الطيران بسرعات تزيد على ماخ 5ـ أي خمسة أضعاف سرعة الصوت ـ وتسمى السرعات التي تصل إلى ماخ 5 أو تزيد عليها، السرعات الفرط صوتية.
وفي عام 1953م، أصبحت الطائرة المقاتلة النفاثة ف ـ 100 سوبر سابر التابعة لأمريكا الشمالية، أول طائرة نفاثة تطير بانتظام عند سرعات فوق صوتية. أما أول طائرة قاذفة فوق صوتية، فكانت الطائرة كونفير ب ـ 58 هوستلر التابعة للقوات الجوية الأمريكية. وبدأت أول طيران لها عام 1956م.
وكانت كل الطائرات النفاثة فوق الصوتية، عسكرية في بداية الأمر إلى أن قام طيارو الاختبار الروس، عام 1968م، بالطيران في أول طائرة نقل فوق صوتية، وهي الطائرة توبولوف تي.يو ـ 144. واشتركت بريطانيا وفرنسا في صنع طائرة نقل فوق صوتية هي الطائرة كونكورد، التي قامت بأول رحلة اختبار جوي لها عام 1969م.
وبدأ الاتحاد السوفييتي (سابقًا) في استخدام الطائرة توبولوف تي. يو ـ 144 في خدمات الشحن الجوي في ديسمبر عام 1975م، وفي خدمات نقل الركاب في عام 1977م. إلا أنه أعلن في عام 1983م، عن سحب الطائرة من الخدمة. أما بريطانيا وفرنسا فقد بدأتا في استخدام الطائرة كونكورد في خدمات نقل الركاب في يناير عام 1976م.
وفي الولايات المتحدة، بدأت شركة بوينج بالفعل في العمل من أجل إنتاج طائرة نقل فوق صوتية. إلا أن الشركة اضطرت لإلغاء المشروع عام 1971م، بعد أن رفض مجلس النواب الأمريكي الموافقة على اعتمادات حكومية إضافية لتمويل المشروع العالي التكلفة.
وعلى الرغم من النصر التقني، والشعبية الجارفة التي تمتعت بها الكونكورد فإنها لم تتمكن من تحقيق أرباح فورية. وتسبب ارتفاع الضوضاء الصادرة عن محركاتها، وكذلك الموجات الصوتية والصدمية التي تتولد عند تجاوزها سرعة الصوت، في اشتداد محاربة حماة البيئة لها، وخصوصًا في الولايات المتحدة. وأصبحت القيود الموضوعة على استخدام الطيران فوق الصوتي فوق الأراضي المأهولة عائقًا دون استخدام الطائرة على الخطوط الجوية كافة. وتم إنتاج 16 طائرة كونكورد فقط لحساب كل من شركة الخطوط الجوية البريطانية، وشركة الخطوط الجوية الفرنسية، اللتين استخدمتا هذه الطائرات في خطوطها عبر شمالي الأطلسي.
وظلت التكلفة التشغيلية للطائرات الأسرع من الصوت، كالكونكورد، باهظة، فهي تحمل نحو من 100 راكب وتستهلك كميات كبيرة من الوقود، وتسبب محركاتها ضوضاء هائلة. وفي سبيل تصنيع طائرات أكبر سرعة وأقل ضجيجًا وأكثر أماناً، عكف مهندسو الطيران على إجراء الأبحاث اللازمة التي تمكنهم من تعزيز كفاءة طائراتهم. وربما تستخدم طائرات المستقبل محركات صاروخية تصل بالطائرة إلى سرعة تفوق سرعة الصوت بخمس عشر مرة.

الأرقام القياسية لارتفاعات الطيران
الارتفاع بالقدم - الارتفاع بالمتر - السنة - الطيار - الدولة
1,637 - 499 - 1909 - أ. رايت - أمريكا
20,079 - 6,120 - 1913 - ج. لجانيو - فرنـسا
33,113 - 10,093 - 1920 - ر. و. شرويدر - أمريكا
41,795 - 12,739 - 1929 - و. نيونهوفن - ألمانيا
43,166 - 13,157 - 1930 - أ. سوسك - أمريكا
49,944 - 15,223 - 1936 - ر. د سوين - بريطانيا
56,046 - 17,083 - 1938 - م. بيزي - بريطانيا
59,445 - 18,119 - 1948 - ج. كننجهام - بريطانيا
63,668 - 19,406 - 1953 - و.ف. جيب - بريطانيا
65,889 - 20,083 - 1955 - و. ف. جيب - بريطانيا
70,308 - 21,430 - 1957 - م. راندروب - بريطانيا
91,243 - 27,811 - 1958 - هـ. س. جونسون - أمريكا
103,389 - 31,513 - 1959 - ج. ب جوردان - أمريكا
113,890 - 34,714 - 1961 - ج. موسولوف - روسيا
246,750 - 75,209 - 1962 - ج. أ. ووكر - أمريكا
314,750 - 95,936 - 1962 - و. م. وايت - أمريكا
354,200* - 107,960* - 1963 - ج. أ. ووكر - أمريكا

المصدر: الأرقام القياسية العالمية والأمريكية ـ الجمعية الوطنية للطيران، والإدارة الوطنية للطيران والفضاء.
* لم يتم التأكد من هذا الرقم رسميًا بوساطة الهيئة الدولية للطيران أو الجمعية الوطنية للطيران.


الطائرات الحديثة
تنقسم الطائرات الحديثة إلى خمس مجموعات رئيسية، هي:
1ـ طائرات نقل تجاري
2ـ طائرات خفيفة
3ـ طائرات عسكرية
4ـ طائرات بحرية
5ـ طائرات أغراض خاصة.
ويشرح هذا الفصل من المقالة بعض أنواع الطائرات في كل مجموعة وكيفية استخدامها.

طائرات النقل التجاري.
طائرات ضخمة تمتلكها شركات الخطوط الجوية، ومعظمها مصمم لحمل الركاب والبضائع. ويطلق عليها أيضًا طائرات السفر الجوي وهناك طائرات نقل تجاري أخرى مصممة لحمل شحنات البضائع فقط.
والكونكورد هي الطائرة التجارية الوحيدة في العالم التي تتخطى سرعة الصوت، وتتسع لأكثر من 120 راكبًا، وتطير بسرعة 2,000كم/ ساعة، لتعبر المحيط الأطلسي في أقل من أربع ساعات.

وتتسع معظم طائرات الخطوط الجوية لعدد من الركاب يتراوح ما بين 100 و250 راكبًا. لكن هناك بعض الطائرات التي تحمل أكثر من ذلك كثيرًا. فالطائرة بوينج 747 تتسع لما يقرب من 500 راكب، وفي الطائرة ستة مطابخ لإعداد الطعام، وتزود بأكثر من 178,000 لتر من الوقود.
والطائرات النفاثة رباعية المحركات مثل الطائرة بوينج 747 مصممة لقطع المسافات الطويلة، فهي تستطيع الاستمرار في الطيران دون توقف لمسافة 10,000كم أو أكثر. ويمكنها ذلك من الطيران المباشر من لندن إلى طوكيو، على سبيل المثال. وتطير طائرات الخطوط الجوية النفاثة على ارتفاعات تتراوح بين 9,000 و 13,700م وبذلك تكون فوق معظم العواصف الجوية.
وتستطيع بعض الطائرات ثلاثية المحركات مثل الطائرة لوكهيد ترايستار والطائرة ماكدونل دوجلاس دي. سي ـ10 حمل عدد من الركاب يساوي ما تستطيع حمله معظم الطائرات النفاثة رباعية المحركات إلا أن معظم الطائرات النفاثة ثلاثية المحركات، مصممة لرحلات جوية أقصر. كما أنها تحتاج فقط لممرات إقلاع أقل طولاً. أما الطائرة الروسية ياك ـ 40، وكذلك بعض الطائرات النفاثة ثلاثية المحركات، فتحمل حوالي 40 راكبًا فقط، وتستطيع الإقلاع والهبوط في مهابط صغيرة

وتحمل معظم طائرات الخطوط التجارية ثنائية المحركات نحو 100 راكب. وتطير الطائرات المروحية ثنائية المحركات بسرعة تقل عن 600كم/ ساعة، وتقوم في معظم الأحوال بالرحلات الجوية القصيرة. أما الطائرات النفاثة ثنائية المحركات فتستطيع الطيران بسرعة أكبر ولمسافات أبعد. فعلى سبيل المثال، تطير كل من الطائرة الأوروبية إيرباص، والطائرة الأمريكية بوينج 747 مباشرة دون توقف في رحلات جوية يصل طولها إلى 3,000كم أو أكثر. وتستطيع هذه الطائرات حمل عدد من الركاب يساوي ما تحمله معظم الطائرات النفاثة رباعية المحركات.
وكثير من طائرات الخطوط الجوية الكبيرة مصممة بحيث يمكن نزع مقاعدها لإفساح المكان لحمولة كاملة من البضائع. وتزود هذه الطائرات بأبواب إضافية ضخمة، كما أنها قد تزود بآلات شحن وتفريغ مبنية داخل جسم الطائرة.

وتتشابه طائرات الشحن التي تحمل بضائع فقط، مع طائرات الخطوط الجوية إلا أنها دون نوافذ. وتستطيع طائرات الشحن الكبرى، مثل الطائرة لوكهيد س ـ 5 أيه.جلاكسي، وكذلك الطائرة طراز بوينج 747 المجهزة للشحن فقط، حمل 90 طنًا متريًا من البضائع لرحلة طولها يزيد على 6,400كم.
وتحمل معظم طائرات الشحن الجوي، البضائع خفيفة الوزن وغالية الثمن. مثل المعدات الإلكترونية وأجزاء الآلات. كذلك تنقل هذه الطائرات البضائع التي يجب توريدها على وجه السرعة، بما في ذلك الورود والفاكهة والخضراوات الطازجة واللحوم. وتحمل طائرات الشحن الأضخم حمولات أثقل، مثل مواد البناء والمعدات العسكرية. ويتم وضع معظم البضائع عند شحنها في صناديق معدنية تسمى الحاويات. وتقوم معدات خاصة بتحميل الحاويات بسرعة وسهولة من أو إلى هذه الطائرات

الطائرات الخفيفة.
طائرات أصغر من طائرات النقل التجاري، وتستطيع الإقلاع والهبوط في مهابط صغيرة. ومعظم هذه الطائرات أحادية المحرك، وتدفع آليا بمراوح، وذات ملكية خاصة. وفي الولايات المتحدة وحدها ما يزيد على 10,000طائرة خفيفة أحادية المحرك وهو رقم يزيد على ما تملكه أي دولة أخرى. وفي الولايات المتحدة، وكذلك في المناطق الواسعة، قليلة السكان بكندا وأستراليا، تستخدم الطائرات الخفيفة وسيلة شائعة للانتقال.
بعض هذه الطائرات تزن ما لا يزيد على بضع مئات من الأرطال أو الكيلوجرامات، وتتسع فقط لقائدها. إلا أن هناك طائرات خفيفة أحادية المحرك تستطيع حمل 12 راكبًا.
وتزود أكبر الطائرات الخفيفة بمحركين تردديين أو نفاثين، وتستطيع حمل 19 شخصًا. وتعمل هذه الطائرات كما لو كانت طائرات سفر جوي صغيرة. وتستخدم الخطوط المحلية والمنتظمة مثل هذه الطائرات لنقل الركاب بين المطارات الصغيرة، والمطارات الكبيرة. وتمتلك الكثير من شركات الأعمال، طائرات خفيفة أحادية أو ثنائية المحركات، وتستخدمها لنقل موظفيها الإداريين والمديرين ومندوبي المبيعات وغيرهم في رحلات عمل. وقليل من طائرات الأعمال وطائرات السلطة التنفيذية، طائرات نفاثة كبيرة وسريعة.
وللطائرات الخفيفة مئات من الاستخدامات الأخرى. فبعض هذه الطائرات يستخدم للكشف عن خطوط الأنابيب وخطوط الهاتف، ولتحديد مواقع حرائق الغابات ومقاومتها، ولتوصيل مساعدات الطوارئ للمتضررين. وتستخدم غيرها من الطائرات لحمل شحنات خفيفة وللتصوير الجوي ولتدريب الطلبة الطيارين. ويستخدم المزارعون هذه الطائرات الخفيفة لأعمال مثل بذر البذور والكشف عن تآكل التربة وحصر الشتلات.
وأخف الطائرات التي تدفع آليًا، هي الطائرات شديدة الصغر، ومتناهية الصغر. وهذه الطائرات ذات مقعد واحد ولا تستطيع حمل أكثر من 120 كجم، وتدفع آليًا بمحرك احتراق داخلي صغير يدفع مروحة. وتطير الطائرات متناهية الصغر عند سرعات تزيد على 290كم/ساعة، عند ارتفاعات تزيد على 7,900م. ويقود هذه الطائرات في الأساس طيارون هواة ورياضيون. وتنظم القوانين في كثير من الدول، الحجم والسرعة والارتفاع الأقصى للطائرات شديدة الصغر، والطائرات متناهية الصغر.

الطائرات العسكرية.
تؤدي هذه الطائرات مهمات خاصة للقوات المسلحة للبلاد. والقليل من الطائرات العسكرية هي في الأصل نماذج خاصة من طائرات النقل أو الطائرات الخفيفة، قامت القوات المسلحة بشرائها من مصانع الطائرات. فعلى سبيل المثال، تستخدم القوات المسلحة للولايات المتحدة نماذج خاصة من الطائرة بوينج707، لنقل الجنود أو كخزان لإعادة تزويد الطائرات الأخرى بالوقود في الجو.
وتُنتج معظم الطائرات العسكرية خصيصًا لأداء مهمة عسكرية محددة. كأن تكون على سبيل المثال:
طائرة مقاتلة أو قاذفة أو طائرة أعمال بحرية أو طائرة نقل. وتعد كل من الولايات المتحدة والاتحاد السوفييتي (سابقًا)، المنتجين الرئيسيين للطائرات العسكرية. وتتعاون الدول الأوروبية كذلك في مشاريع مشتركة، مثل مشروع إنتاج الطائرة بانافيا تورنادو التي اشترك في إنتاجها كل من بريطانيا وإيطاليا وألمانيا الغربية. وتشمل الطائرات العسكرية أضخم الطائرات في العالم مثل طائرة القوات الجوية التابعة للولايات المتحدة طراز س 5 أ جالاكسي القادرة على حمل دبابتين أو 350 جنديًا. كذلك تشمل أسرع الطائرات العالمية مثل الطائرة لوكهيد س.ر 71 أ، طائرة الاستطلاع التي تستطيع التحليق على ارتفاع يصل إلى 30,000م، وبسرعة تزيد على 3,200كم/ساعة.

الطائرات البحرية.
طائرات تستطيع الإقلاع والهبوط فوق الماء. وهناك ثلاثة أنواع من الطائرات البحرية هي:
1ـ الطائرات العائمة،
2ـ القوارب الطائرة،
3ـ الطائرات البرمائية.

والطائرات العائمة والقوارب الطائرة تستطيع العمل فوق الماء فقط، والطائرات العائمة طائرات أرضية مزودة بعوامة كبيرة بدلاً من العجلات. أما القوارب الطائرة فجسمها محكم ضد تسرب الماء، وتستطيع الطفو فوق الماء مثل هيكل السفينة تمامًا. والطائرات البرمائية طائرات عائمة أو قوارب طائرة مزودة بعجلات مثبتة في عوامتها أو في هيكلها. ويستطيع الطيار جذب العجلات لأعلى أو لأسفل لتقلع أو لتهبط على الأرض والماء على حد سواء.

طائرات الأغراض الخاصة.
طائرات مصممة لأداء مهام خاصة. من هذه الأنواع طائرات رش المحاصيل التي يستخدمها المزارعون لرش حقولهم بالمخصبات والمبيدات السائلة. وهذه الطائرات مصممة لتطير بسرعة بطيئة ولحمل خزانات كبيرة مملوءة بالكيميائيات السائلة. والطائرات البرمائية المصنعة في كندا، مصممة خصيصًا لمكافحة حرائق الغابات. وتستطيع هذه الطائرة الهبوط فوق البحيرات، وسحب ما يزيد على 3,800 لتر من الماء في خزاناتها المجهزة خصيصًا لذلك. وتقلع الطائرة في اتجاه الحريق لتسقط حمولتها من الماء. ومن طائرات الأغراض الخاصة كذلك، الطائرات المستخدمة في المسابقات أو الألعاب الجوية أو البهلوانية. وتتسم هذه الطائرات بخفة الوزن وأدائها للمناورات الجوية الصعبة. من أنواع طائرات الأغراض الخاصة أيضًا طائرات التجميع المنزلي وتُصنَّع أجزاؤها في مجموعات معدة للتركيب بوساطة المالك.
أما ما يسمى بطائرات الإقلاع والهبوط العمودي أو القصير (ف. ستول) فهي طائرات صممت للإقلاع والهبوط العمودي أو من ممر شديد القصر، بحيث لا تحتاج الطائرة لممر أطول من 150م للإقلاع والهبوط. وتحتاج الطائرات العادية إلى عشرة أضعاف هذا القدر. وهناك طائرات تقلع عموديًا تماما بينما طائرات أخرى تقلع وتهبط في مسافة قصيرة.
ولطائرات الإقلاع والهبوط العمودي أو القصير، كالطائرة البريطانية هاريير قيمة عسكرية كبيرة، لاستطاعتها الهبوط على حاملات طائرات صغيرة أو على الأراضي الممهدة داخل الغابات. تخدم طائرات الإقلاع والهبوط القصير في الخطوط الجوية التجارية. فهي تستطيع استخدام مطارات صغيرة في المدن الكبرى أو مهابط غير جيدة التمهيد في المناطق النائية.


يتبع>

الغراب الأسود 20 - 11 - 2010 02:31 AM

الطائرات الصاروخية.
في 14 أكتوبر 1947م، قام الكابتن تشارلز إلوود ييجر من القوات الجوية الأمريكية بأول رحلة فوق صوتية (أسرع من الصوت). فقد حلق بطائرة صاروخية تسمى إكس ـ 1. دفع الصاروخ السمائي بوساطة محرك صاروخي، جعل الطائرة تحلق على ارتفاع 24 كم في عام 1951م وسرعة 2,132كم/ساعة في عام 1953م. كما أن طائرة صاروخية أخرى هي "إكس ـ 15" ارتفعت إلى أكثر من 108كم في عام 1963م. ثم سجلت في عام 1967م سرعة بلغت 7,274كم/ساعة؛ أي أكثر من 6 أضعاف سرعة الصوت.


أجزاء الطائرة


تتكون كل الطائرات ـ فيما عدا القليل من الطائرات التجريبية ـ من نفس الأجزاء الرئيسية. وهذه الأجزاء هي:
1ـ الجناح
2ـ الهيكل (الجسم)
3ـ مجموعة الذيل
4ـ جهاز الهبوط
5ـ المحرك.
وتشكل كل هذه الأجزاء ـ فيما عدا المحرك ـ هيكل الطائرة. ويناقش هذا الجزء من المقالة الأجزاء الرئيسية للهيكل، وكذلك أجهزة قيادة الطائرة وآلاتها ومختلف أنواع المراوح. وفي الجزء التالي من المقالة يتم شرح المحركات.

الجناح.

التصميم الهندسي للجناح والذيل وجهاز الهبوط

يمتد جناح الطائرة إلى الخارج من كل جانب من جانبي الطائرة. والسطح السفلي للجناح مستٍو تقريبًا بينما السطح العلوي مقوس. يساعد هذا الشكل الانسيابي على توليد قوة الرفع التي ترفع الطائرة عن الأرض وتبقي عليها في الجو. انظر فقرة كيف تطير الطائرة، فهي تشرح كيف يساعد شكل الجناح في توليد قوة الرفع.
وتُصنع معظم أجنحة الطائرات من الفلز. وللجناح هيكل يتركب من قوائم طولية، وأضلاع عرضية. ويغطي الهيكل بغطاء رقيق يصنع عادة من سبيكة ألومنيوم. (السبيكة خليط من الفلزات) ومعظم الطائرات لها أجنحة كابولية مثبتة تماما في الجسم.
ولجناح الطائرة جذر، وطرف، وحافة أمامية، وحافة خلفية. فالجذر هو الجزء من الجناح المثبت بالجسم، والطرف هو حافة الجناح الأبعد عن الجسم، والحافة الأمامية هي الحافة المقوسة في مقدمة الجناح. ويزداد سُمْك الجناح ابتداء من الحافة الأمامية، ثم ينحدر للخلف حتى الحافة الخلفية الحادة كالسكين. وفي معظم الطائرات يكون طرفا الجناح أعلى قليلا من جذريه. ويسمى الجناح في هذه الحالة جناحًا ذا زاوية زوجية.
وفي معظم الطائرات تكون الأجنحة سفلية التثبيت، أي أنها مثبتة في الجزء السفلي من الجسم. إلا أنه توجد طائرات ذات أجنحة وسطى، حيث تثبت قرب منتصف علو جانب الجسم. كذلك هناك طائرات ذات أجنحة عليا، حيث تثبت الأجنحة قرب الحافة العليا للجسم. والأجنحة المستقيمة تصنع الحافة الأمامية لها زاوية قائمة مع الجسم. وتزود معظم الطائرات بهذا النوع من الأجنحة، لأن أداءه يكون ممتازا في الطيران بسرعات عالية أو منخفضة على السواء.
ولكثير من الطائرات عالية السرعة ـ وبخاصة الطائرات النفاثة ـ أجنحة ذات امتداد خلفي. وتميل هذه الأجنحة للخلف ابتداءً من الجذر حتى الطرف. ولقلة من الطائرات أجنحة ذات (امتداد أمامي). والجناح المثلثي يشبه المثلث الهندسي. ويكون طول الجذر فيها مساويًا تقريبًا لطول الجسم، بينما يمتد الحرف الأمامي إلى الخلف بانحراف كبير. ويوفر هذا التصميم للطائرة سرعة طيران عالية، كما أنه يقلل من قوة السحب الهوائي. وتزود الطائرات الحربية عالية السرعة ذات الشكل الهندسي المتغير بما يسمى بالأجنحة المتحركة، حيث يمكن تحريك الأجنحة و الطائرة في الجو. فعندما تكون الأجنحة خارجة في الوضع المستقيم، يكون ذلك مناسبًا للطيران بسرعات منخفضة، حيث تتولد في هذا الوضع قوة رفع إضافية. أما إذا كانت الأجنحة في وضع الامتداد الخلفي على شكل جناح مثلثي، فإن الطائرة تكون في أفضل أوضاعها للسرعات العالية. وفي معظم أجنحة الطائرات أسطح تحكم متحركة تساعد على المحافظة على توازن الطائرة في الجو.الجنيحات مقاطع مثبتة مفصليا بطول الحافة الخلفية للجناح. ويمكن تحريكها لأعلى أو لأسفل للتحكم في الاستقرار العرضي للطائرة (أي الاتزان من جانب للجانب الآخر). وتستخدم الجنيحات للتحكم في جعل الطائرة تميل جانبًا يمينًا أو يسارًا من أجل الالتفاف. وبينما يرتفع أحد الجنيحين إلى أعلى، ينخفض الجنيح الثاني لأسفل. وفي معظم الطائرات يثبت مفصليا في نهاية كل جنيح، سطح يسمى سطيح تعديل الموازنة. ويستخدم قائد الطائرة هذا السطيح لتخفيف الجهد اللازم من قِبله من أجل المحافظة على توازن الطائرة في الجو. وتوجد عادة سطيحات تعديل موازنة على كل من الدفة والرافعة، كتلك الموجودة على الجنيحات. ويشرح الجزء المعنون قيادة الطائرة، كيف يستخدم الطيار سطيحات تعديل الموازنة.
وتزود الكثير من الطائرات بقلابات. وتوضع هذه الأسطح المثبتة مفصليًا بطول الحرف الخلفي للجناحين قرب الجذر. ويتم خفض القلابات لأسفل لمساعدة الطائرة وزيادة قوة الرفع أثناء الإقلاع ولزيادة قوة السحب الهوائي أثناء الهبوط.
ولبعض الطائرات أجهزة تحكم إضافية مثبتة في الجناحين. فهناك، على سبيل المثال، جهاز تخفيف الرفع (المدادات) وهو سطح مثبت على الجزء العلوي من كلا الجناحين. ويمكن لقائد الطائرة رفع جهازي تخفيف الرفع لعمل مكابح هوائية. أما إذا رفع الطيار جهاز تخفيف الرفع في جانب واحد فقط، فإن الطائرة تميل في نفس هذا الاتجاه. وتحل أجهزة تخفيف الرفع في بعض الطائرات محل الجنيحات.
والشريحة الأمامية، سطح مثبت مفصليًا عند الحرف الأمامي قرب الطرف الخارجي لكلا الجناحين. وتنحدر الشريحة آليا ـ عند السرعات المخفضة ـ خارجة للأمام، فتساعد الأجنحة على توليد قوة الرفع. والشق، فتحة صغيرة توجد خلف الحرف الأمامي مباشرة قرب كل من طرفي الجناح. ويساعد هذان الشقان أيضًا على توليد قوة رفع أكبر عند السرعات المنخفضة.
وتثبت المحركات ـ في كثير من الطائرات ـ إما فوق الأجنحة أو داخلها. وتوجد المحركات داخل غلاف معدني مغلق يسمى كِنَّة المحرك، يوجد عادة أسفل الجناح. وتتسع أيضًا معظم الأجنحة في داخلها لاحتواء خزانات الوقود وجهاز الهبوط. وتتوزع أنواع مختلفة من كشافات الإنارة على أجنحة الطائرة. فيوجد عند كٍل من طرفي الجناح ضوء ملاحي ملون، أو ضوء تحديد للموقع. فالضوء الموجود عند طرف الجناح الأيسر يكون ذا لون أحمر، أما الضوء الموجود عند الطرف الأيمن فيكون أخضر اللون. وعند رؤية هذين الضوئين، يمكن ـ من اللمحة الأولى ـ تحديد اتجاه سير الطائرة.

الجسم.
يمتد جسم الطائرة من مقدمتها حتى ذيلها. ويأخذ جسم معظم الطائرات الشكل الأنبوبي، المغطى بغلاف خفيف من الألومنيوم. وفي الطائرات أحادية المحرك يثبت المحرك عادة في الجزء الأمامي للجسم. لكن بعض الطائرات النفاثة يثبت أحد محركاتها أو كلها في الجزء الخلفي من الجسم.
ويجمع الجسم بداخله أجهزة التحكم، والطاقم، والركاب، والبضائع. ويحتوي الجسم، في الطائرات الصغيرة، على قمرة تتسع فقط للطيار وراكب واحد. ويجلس قائد الطائرة مع الركاب في الطائرة التي تتسع لما بين راكبين، وستة ركاب. وفي معظم الطائرات الكبيرة قمرة منفصلة للطاقم، وأخرى للركاب والبضائع. وفي الطائرات الأضخم، مثل الطائرة بوينج 747، يكون بالقمرة طابقان منفصلان لكل من الركاب والبضائع.
مجموعة الذيل. هي الجزء الخلفي من الطائرة. وتساعد مجموعة الذيل على التحكم في قيادة الطائرة والمحافظة على اتزانها في الجو. ومعظم مجموعات الذيل تتكون من زعنفة ودفة رأسيتين، وموازن ورافعة أفقيتين. وتقف الزعنفة رأسيا ثابتة دون حركة، لتحافظ على مؤخرة الطائرة من التأرجح يمينًا أو يسارًا. وتثبت الدفة في الطرف الخلفي للزعنفة، وتتحرك في أي من الجانبين للتحكم في الطائرة أثناء الدوران.
ويشبه الموازن جناحًا صغيرًا مثبتًا عند الذيل، ويعمل على منع الذيل من التذبذب إلى أعلى أو أسفل محافظًا على الاستقرار الأفقي للطائرة.
وتثبت الرافعـة في الطـرف الخـلفـي للموازن، ويحركها الطيار إلى أعلى أو أسفل ليرفع أو ليُخفض مقدمة الطائرة.
ولمعظم الطائرات الحديثة ذيل أفقي يتحرك بالكامل، بدلا من الموازن والرافعة. ويتحرك الذيل الأفقي في هذه الحالة بكامله إلى أعلى أو أسفل. وربما تزود الطائرات بسطيح تعديل الموازنة عند الرافعة أو الذيل الأفقي كامل الحركة، بينما يزود بعضها فقط بسطيح تعديل الموازنة عند الدفة.

ولمجموعة الذيل أشكال وترتيبات مختلفة.
ففي بعض الطائرات، تثبت الزعنفة والدفة رأسيا بحيث تصنع زاوية قائمة مع الجسم. بينما في طائرات أخرى يميلان بزاوية حادة للخلف. وفي معظم الطائرات النفاثة التي تكون محركاتها في مؤخرة الجسم، يثبت الموازن الأفقي والرافعة عبر أو قرب النهاية العليا للذيل الرأسي والرافعة، أو قربها، ويكونان أطول من المعتاد. وتكون مجموعة الذيل لبعض الطائرات الخفيفة على شكل 7 مثبت في كل منها رافعة وسطيح تعديل الموازنة.
جهاز الهبوط أو جهاز العربة السفلي. ويتكون من العجلات أو العوامات التي تتحرك الطائرة فوقها عندما تسير على الأرض أو الماء. ويتحمل جهاز الهبوط وزن الطائرة عند سيرها على الأرض أو الماء.
وللطائرات الأرضية نوعان من أجهزة الهبوط. ففي بعض الطائرات الخفيفة، يتكون جهاز الهبوط من عجلتين أسفل الجزء الأمامي للجسم، وعجلة ثالثة تحت الذيل، أما معظم الطائرات الأخرى فلها جهاز هبوط ثلاثي، يتكون في الطائرات الخفيفة ـ من عجلة أسفل المقدمة وعجلتين تحت منتصف الجسم، أو واحدة تحت كل جناح، وكثير من الطائرات الكبيرة لها جهاز هبوط ثلاثي يتكون من:
1ـ جهاز الهبوط الرئيسي، ويتضمن ما يصل إلى 12 عجلة أسفل كل من الجناحين،
2ـ جهاز هبوط المقدمة به عجلة أو عجلتان على الأكثر.
وجهاز الهبوط إما ثابت، أو قابل للطي. ويبقى الجهاز الثابت في وضعه الممتد طوال الطيران مما يخفض من سرعة الطائرة. أما الطائرات عالية السرعة فيتم في معظمها طي العجلات أو جذبها لأعلى بعد إتمام الإقلاع، إما لداخل الأجنحة وإما إلى داخل الجسم.
ويقوم جسم الطائرة المائية المحكم ضد تسرب الماء بعمله كجهاز هبوط وقمرة في نفس الوقت. أما العوامات، فتقوم مقام جهاز الهبوط في الطائرات العادية. وللطائرات البرمائية ـ التي تعمل من الأرض والماء ـ عجلات تطوى مثبتة في العوامات أو الجسم.


أجهزة التحكم والعدادات.

في داخل قمرة القيادة، تتوفر لقائد الطائرة مختلف أجهزة القيادة والعدادات والمساعدات الملاحية. ولمعظم الطائرات عجلة قيادة تقوم بتشغيل الجنيحات والرافعة، بينما لعدد قليل من الأنواع الخاصة من الطائرات ـ مثل المقاتلات وطائرات الرش الزراعي عصًا للتحكم بدلاً من عجلة القيادة. وتتحكم في تشغيل الدفة دواستان. ويوجد كذلك عدد من العدادات المتصلة بالمحرك لتسجيل استهلاك الوقود، وضغط الزيت، وغير ذلك من المعلومات عن المحرك. أما عدادات الطيران فتبين سرعة الطائرة، والارتفاع، وزاوية توجيه المقدمة (وضع المقدمة) في الهواء.
ولبعض الطائرات، طيار آلي، ويتصل هذا الجهاز بأجهزة التحكم ويتولى المحافظة على الطائرة في وجهتها آليًا. وتزود كل طائرات الخطوط الجوية الحديثة بطيار آلي، وبحاسوب محمول، وغير ذلك من المساعدات الإلكترونية مثل، الرادار.
وللمزيد من المعلومات عن أجهزة التحكم والعدادات في الطائرة، انظر فقرة قيادة الطائرة، وفقرة الملاحة الجوية ضمن هذه المقالة.

المراوح.

مراوح الطائرات

(الدواسر أو المروحية) وهي تدفع الطائرات ذات المحركات المروحية التوربينية، وكذلك ذات المحركات الترددية (أو المكبسية) خلال الهواء. وفي معظم هذه الطائرات يكون لكل مروحة محرك خاص بها. وفي قليل من الطائرات تدار المراوح بمحور مشترك ـ أي تدار مروحتان بمحرك واحد ـ وتثبت المروحة في معظم الطائرات أحادية المحرك ـ وأحادية المروحة ـ عند مقدمة الجسم. بينما تثبت المحركات والمراوح في الطائرات التي يزيد عدد محركاتها على محرك واحد، عند الأجنحة.


الغراب الأسود 20 - 11 - 2010 02:34 AM

القدرة اللازمة للطيران
يولد المحرك، القدرة اللازمة لطيران الطائرة. وتستخدم الطائرات ثلاثة أنواع رئيسية من المحركات:

1ـ محركات ترددية أو مكبسية
2ـ محركات نفاثة
3ـ محركات صاروخية.
والمحركات الترددية هي الأكثر وزنًا والأقل إنتاجًا للقدرة من بين هذه الأنواع، بينما المحركات الصاروخية هي الأكثر إنتاجًا للقدرة.

المحركات الترددية أو المكبسية.
وتستخدم أكثر من غيرها من أنواع محركات الطائرات. فمعظم الطائرات الصغيرة، وكثير من الطائرات الكبيرة مزودة بمحركات ترددية. ولهذه الطائرات مروحة أو أكثر. ويدير المحرك المروحة، لتتولد قوة لدفع الطائرة في الجو.

ويعمل المحرك المكبسي في الطائرة، بصورة تشبه عمله في السيارة. ففي الحالتين، يقوم المحرك بحرق خليط من البنزين والهواء داخل أسطوانات، مما يحدث انفجارا يؤدي إلى دفع المكابس للحركة داخل الأسطوانات إلى أعلى وإلى أسفل. وتدير هذه الحركة الدافعة، عمود المرفق، الذي يقوم بدفع مروحة الطائرة للدوران. وفي السيارة يقوم عمود المرفق بدفع أجزاء أخرى تؤدي في النهاية إلى دوران العجلات. إلا أن المحرك الترددي المستخدم في الطائرات، يختلف عن مثيله المستخدم في السيارات في كثير من النواحي. ففي معظم محركات الطائرات، ترتب الأسطوانات دائريًا أو في خطين متوازيين. أما في محركات السيارات، فإنها ترتب إما في خط مستقيم واحد، وإما على شكل 7. وتستخدم محركات الطائرات كذلك جهازًا يسمى المغنيط بدلاً من البطاريات لإحداث الشرارة. ويتم تبريد معظم محركات الطائرات بالهواء بدلا من الماء.
تقاس قدرة المحرك الترددية بوحدة الكيلوواط، وتتراوح قدرة معظم محركات الطائرات بين 22كيلوواط للطائرات الصغيرة ذات المحرك المفرد، ونحو 300 كيلوواط للطائرات الكبيرة ثنائية المحركات. وقد كان أكثر المحركات الترددية إنتاجًا للقدرة المستخدمة لدفع الطائرات، المحرك المثبت على الطائرة القاذفة الأمريكية العملاقة ب ـ 36، والذي كان يولد 2,722 كيلوواط، في أواخر الأربعينيات من القرن العشرين. ولم تعد الطائرات الكبيرة أو السريعة تستخدم مثل هذه المحركات الترددية ذات القدرة العالية. فمثل هذه الطائرات أصبحت تدفع آليا بمحركات نفاثة أخف وزنًا من المحركات الترددية رغم أنها تولد قدرة أكثر منها كثيرًا. ومازالت المحركات الترددية تستخدم في معظم الطائرات الخفيفة حيث تعمل بصورة أفضل من المحركات النفاثة عند السرعات المنخفضة.

المحركات النفاثة.
تُمكِّن المحركات النفاثة الطائرات الكبيرة من السفر مسافات طويلة بسرعات عالية. لكن المحركات النفاثة لابد لها أيضا من أن تعمل بصورة مرضية عند السرعات المنخفضة حتى تستخدم للدفع الآلي للطائرات من أجل سلامة هبوط الطائرة. وهناك ثلاثة أنواع للمحركات النفاثة، هي:
1ـ محرك توربيني نفاث
2ـ محرك توربيني مروحي
3ـ محرك مروحي توربيني.

والمحرك التوربيني النفاث هو أول محرك نفاث يحقق نجاحًا، ومازال يستخدم للآن في بعض الطائرات. ومثل المحركات النفاثة الأخرى، يسحب المحرك التوربيني النفاث الهواء من أمامه، ويحرقه بعد خلطه بالوقود. ويتولد عن هذه العملية نفث قوي للعادم حيث تندفع غازات العادم من خلال المحرك إلى مؤخرته بسرعة فائقة، مما يتسبب في تحرك المحرك للأمام بسرعة عالية مساوية. (انظر: الدفع النفاث أعلاة).
وقبل أن يترك العادم فوهة المحرك، يدير قرصًا للتوربين. فيدير التوربين أجزاء المحرك المختلفة. (انظر: التوربين أعلاة).
وتزود كل طائرات الخطوط الجوية الحديثة تقريبًا بمحركات توربينية مروحية، تماثل المحركات التوربينية النفاثة مع إجراء بعض التحسينات. والمحرك التوربيني المروحي يعمل في معظم الأحوال مثله مثل المحرك التوربيني النفاث، إلا أن له مروحة أمامية تسحب كمية كبيرة من الهواء. يتجه جزء فقط من هذا الهواء للاحتراق مع الوقود لتوليد نفث العادم، أما الهواء الباقي فينضم إلى غاز العادم عند خروجهما معا من فوهة المحرك. ويصبح بذلك العادم الناتج أكثر قدرة وأقل حرارة من عادم المحرك التوربيني النفاث.. ويستهلك المحرك التوربيني المروحي وقودا أقل مما يستهلكه المحرك التوربيني النفاث، ويصدر ضوضاء أقل، كما أنه يعمل بصورة أفضل عند السرعات البطيئة.

وتستخدم الطائرة المروحية التوربينية، محركًا توربينيًا نفاثًا لدفع المروحة الأمامية. وتجمع بذلك بين القدرة الفائقة للمحرك التوربيني النفاث وقدرة المراوح الأفضل على الطيران عند سرعات منخفضة.

وهناك أنواع أخرى من إلا أنها نادرًا ما تستخدم لدفع الطائرات. فالمحرك النفاث التضاغطي هو أبسط أنواع المحركات النفاثة وأكثرها إنتاجًا للقدرة. لكنه لا يعمل إلا عند السرعات العالية فقط. ويستخدم المحرك النفاث التضاغطي أساسًا في دفع القذائف الطائرة (وهي طائرات دون طيار)، وكذلك للأسلحة. أما المحرك النافوري النبضي فهو أيضًا محرك نفاث مبسط. إلا أنه يستهلك قدرًا كبيرًا من الوقود ويصدر ضوضاء شديدة، ولهذا فهو لا يصلح لدفع الطائرات. (انظر: الدفع النفاث أعلاة).

المحركات الصاروخية.
يعمل المحرك الصاروخي بصورة مشابهة لعمل المحرك النفاث، فيما عدا أنه ليس في حاجة للتزود بالأكسجين من الجو الخارجي، ويتحسن أداء المحرك الصاروخي عند السرعات العالية جدًا، إلا أنه يستهلك أيضًا قدرًا عاليًا من الوقود مما يرفع من تكلفة تشغيله. ويظل احتمال انفجار المحرك الصاروخي في أي لحظة سببًا في عدم استخدامه للدفع الآلي للطائرات التي تحمل ركابًا، نظرا لشدة خطورته.

ورغم عيوبه، فإن المحرك الصاروخي يستخدم أحيانًا لدفع الطائرات. فهناك عدد قليل من الطائرات النفاثة أو المروحية التوربينية التي تستخدم محركات صاروخية صغيرة لمساعدتها على الإقلاع بسرعة عالية إذا كانت الحمولة كبيرة أو للإقلاع من ممر قصير. وتُثبت المحركات الصاروخية إما بجسم الطائرة أو أسفل أجنحتها. وقد استخدمت المحركات الصاروخية للدفع الآلي لكثير من طائرات الاختبار فوق الصوتية، مثل الطائرة بيل إكس ـ 1، والطائرة الأمريكية إكس ـ 15.


كيف تطير الطائرة


القوى الأربع التي تؤثر على الطائرة في الجو هي:1ـ الجاذبية 2ـ الرفع 3ـ السحب الهوائي 4ـ الدفع. والجاذبية هي القوة الطبيعية التي تجذب الطائرة في اتجاه الأرض. وقوة الرفع تدفع الطائرة إلى أعلى ضد قوة الجاذبية. أما قوة السحب الهوائي فهي القوة الطبيعية للهواء الذي يضاد حركة الطائرة للأمام. ويوازن الدفع قوة السحب الهوائي ويدفع الطائرة للأمام.
تتحكم في طيران الطائرة أربع قوًى هي:
1ـ الجاذبية
2ـ قوة الرفع
3ـ قوة السحب الهوائي
4ـ قوة الدفع.
والجاذبية هي القوة الطبيعية التي تجذب الطائرة في اتجاه الأرض. أما قوة الرفع فهي القوة التي تدفع الطائرة إلى أعلى ضد قوة الجاذبية. وتتولد هذه القوة بسبب حركة جناح الطائرة خلال الهواء. وقوة السحب الهوائي هي القوة الطبيعية لمقاومة الهواء لحركة الطائرة للأمام. وقوة الدفع هي القوة التي تضاد قوة السحب الهوائي، وتتسبب في حركة الطائرة للأمام. وتتولد قوة الدفع بوساطة مراوح الطائرة أو المحركات النفاثة. وعندما تتساوى قوة الرفع للطائرة مع قوة الجاذبية، وتتساوى قوة الدفع مع قوة السحب الهوائي، تطير الطائرة في وضع مستقيم مستٍو. وعندما تتغير أي من هذه القوى الأربع، تبدأ الطائرة في الصعود، أو الدوران أو تغيير الاتجاه أو تغيير الوضع. ويناقش هذا الجزء من المقالة، بعض الطرق التي تؤثر بها القوى الأربع في طيران الطائرة. ويناقش الجزء التالي كيف يتحكم الطيار في هذه القوى.


قوة الجاذبية وقوة الرفع.

قوة الرفع تتولد من انخفاض ضغط الهواء فوق جناح الطائرة. والسطح العلوي للجناح محدب. وينخفض ضغط الهواء الذي يسري فوق هذا السطح المحدب عندما تتحرك الطائرة للأمام. وتحاول منطقة الضغط المرتفع دائمًا أن تتحرك في اتجاه منطقة الضغط المنخفض، ولهذا فإن منطقة الضغط المرتفع أسفل الجناح ترتفع في اتجاه منطقة الضغط المنخفض فوقه فترفع الطائرة في الجو.
تحاول قوة الجاذبية المحافظة على بقاء الطائرة فوق سطح الأرض أو جذبها نحو الكرة الأرضية عندما تطير في الجو. وقوة الجاذبية عند الأرض تساوي وزن الطائرة. ولكي تقلع الطائرة وتبقى في الجو، لابد لجناحها من توليد قوة رفع لأعلى تزيد على قوة الجاذبية لأسفل. وتتولد قوة الرفع بسبب تغير ضغط الهواء حول المقطع الانسيابي للجناح كلما تحركت الطائرة على أرض الممر (المدرج) أو في الهواء.

فشلت المحاولات الأولى للطيران باستخدام الأجنحة، حيث لم يكن مفهومًا حينئذ أن السطح العلوي المحدب لجناح الطائر هو السبب في تولد قوة الرفع. وبعد اكتشاف هذه الحقيقة، بدأ الناس في صنع أجنحة الطائرات بحيث يكون سطحها العلوي محدبًا قليلاً. وبذلك تولدت قوة الرفع اللازمة، بنفس الطريقة التي يعمل بها جناح الطائر.

عندما تكون الطائرة واقفة فإن ضغط الهواء على الجناح من أعلى ومن أسفل يتساوى، وعندما تتحرك الطائرة للأمام، يبدأ الهواء في السريان فوق الجناح وأسفله ويتحرك الهواء المار فوق السطح العلوي المحدب للجناح في مساٍر منحنٍ، فتزيد سرعته بينما يقل ضغطه. ويتحرك الهواء المار على السطح السفلي للجناح في خط مستقيم، فتبقى لذلك سرعته وضغطه ثابتين. وتحاول منطقة الضغط المرتفع دائما الحركة في اتجاه منطقة الضغط المنخفض. ولهذا فإن الهواء أسفل الجناح يحاول الحركة إلى أعلى في اتجاه الهواء أعلى الجناح. لكن الجناح يحجز طريقه. لذلك، فبدلاً من الالتقاء بمنطقة الضغط المنخفض، تقوم منطقة الضغط المرتفع برفع الجناح في الجو. وكلما زادت سرعة الطائرة، زادت قوة الرفع التي يولدها الجناح. وبزيادة الطائرة لسرعتها في أثناء حركتها على الممر قبل الإقلاع، يولد جناحها رفعًا متزايدًا. وفي نهاية الأمر، عندما يزيد الضغط أسفل الجناح على وزن الطائرة، وتصبح قوة الرفع أكبر من قوة الجاذبية، تقلع الطائرة.


قوة السحب الهوائي وقوة الدفع.


يستطيع الجناح توليد قوة الرفع فقط عندما يكون متحركا للأمام خلال الهواء. لهذا فإن الطائرة تحتاج إلى محركات تولد قوة الدفع اللازمة لبدء الحركة الأمامية المطلوبة. وكلما زادت قوة الدفع، تحركت الطائرة أسرع من قبل. لكن، مع زيادة سرعة الطائرة، تزيد قوة السحب الهوائي. ولمقاومة هذا السحب الهوائي، تحتاج الطائرة لمزيد من الدفع.

وفي المحركات النفاثة، تتولد قوة الدفع بسبب الحركة السريعة للغازات خلال المحرك. وتتولى المراوح توليد قوة الدفع للطائرات المروحية التوربينية والطائرات المدفوعة بمحركات ترددية. تشبه ريش المراوح جناح الطائرة في كثير من الوجوه. وعند دوران المروحة، ينخفض ضغط الهواء أمامها. وهنا يبدأ الهواء ذو الضغط الأعلى خلف الريش في الحركة في اتجاه الضغط المنخفض أمامها دافعا ريش المروحة والطائرة للحركة إلى الأمام. وكلما زادت سرعة المحرك النفاث أو دوران المروحة زادت قوة الدفع المتولدة.
وللمساعدة في زيادة قوة الدفع، يسعى المهندسون لتصميم جسم الطائرة في شكل انسيابي ما أمكن ذلك، ويتم إكساب الطائرة سطحًا أملس وشكلا محكمًا، كما يتم تصميم جميع الأجزاء الموجودة على سطحها الخارجي بحيث تستطيع شق طريقها في الهواء بسهولة ونعومة.

تغيـير الارتفاع .
تتوازن قوة الرفع مع قوة الجاذبية، وقوة الدفع مع قوة السحب الهوائي للطائرة التي تطير في وضع مستقيم ومستوٍ. وللبدء في الهبوط بالطائرة فلا بد أن يشرع قائدها في تخفيض قدرة المحرك. ويتم ذلك بالنسبة للمحركات النفاثة والمحركات المروحية، بتخفيض سرعة دوران المحرك لتخفيض قوة الدفع المتولدة. ومع انخفاض قوة الدفع، تنخفض أيضًا قوة الرفع لتبدأ الطائرة في الهبوط إلى أسفل. وفي نفس الوقت تزيد قوة السحب الهوائي فتنخفض سرعة الطائرة ويزيد معدل هبوطها.

وللصعود، لابد لقائد الطائرة من أن يزيد من قدرة محركاتها. وتدور المروحة، أو المحرك النفاث، بسرعة أكبر لتتولد قوة دفع أكبر. ومع زيادة قوة الدفع، تزيد قوة الرفع، لتبدأ الطائرة في الصعود. إلا أن الصعود يرفع من قوة السحب الهوائي ولهذا، تحتاج الطائرة للمزيد من قوة الرفع. وللحصول على أعلى قوة رفع، يقوم الطيار بزيادة زاوية الهبوب، وهي الزاوية التي يقطع بها الجناح الهواء. وتستخدم لذلك أجهزة التحكم لدفع مقدمة الطائرة لتشير لأعلى قليلاً، حتى يصنع الجناح زاوية موجبة مع مسار الطيران. وتزيد سرعة الهواء المار فوق السطح العلوي للجناح ليصبح ضغطه أقل من ضغطه في أثناء الطيران المستوي. وتتحرك منطقة الضغط المرتفع أسفل الجناح إلى منطقة الضغط المنخفض أعلاه مولدة قوة الرفع. لكن الاستمرار في زيادة زاوية الهبوب يؤدي في النهاية إلى اضطراب الهواء فوق سطح الجناح وزيادة قوة السحب الهوائي ويستعيد الطيار توازن القوى الأربع المؤثرة على الطائرة عن طريق زيادة قدرة المحرك لتوليد قوة دفع أكبر.

تغيير الاتجاه.
يقوم الطيار بإجراء دوران للطائرة عن طريق زيادة قوة الرفع المتولدة من جناح أو آخر. فلإجراء دوران إلى اليسار، مثلاً، يستخدم الطيار أجهزة التحكم التي تضع الطائرة في وضع الميل الجانبي لليسار: أي أن الجناح الأيسر يسقط منخفضًا عن الجناح الأيمن. وتتولد قوة الرفع دائمًا عمودية على سطح الجناح. فعندما لا يكون الجناح أفقيًا موازيًا لسطح الأرض، تكون قوة الرفع هي الأخرى مائلة مع سطح الأرض. وتزيد قوة الرفع على الجناح الأيمن عندما ينخفض الجناح الأيسر، مما يدفع الطائرة للدوران. ويستخدم قائد الطائرة الدفة للمحافظة على وضع الطائرة مستقرًا. ولا يُعتمد على الدفة لإحداث الدوران، بل إن ميل قوة الرفع عند الأجنحة بزاوية كافية مع خط الأفق هي التي تدفع الطائرة للدوران.

وعندما تبدأ الطائرة في الدوران، تقل قوة الرفع المضادة للجاذبية وتفقد الطائرة بعض ارتفاعها. ولاستعادة توازن القوى الأربع مرة أخرى، يمكن للطّيار اتخاذ أحد إجراءين، هما: 1ـ زيادة زاوية الهبوب ليزداد الرفع المتولد على الأجنحة 2ـ زيادة قدرة المحركات لزيادة قوة رفع أكبر. وفي الدوران الحاد، يقوم الطيار بزيادة كل من زاوية الهبوب، وقدرة المحرك في آن واحد، لمنع الطائرة من فقد بعض ارتفاعها. لمزيد من المعلومات عن كيفية طيران الطائرة وكيف تؤثر القوى الأساسية على الطائرة في الجو، انظر: الديناميكا الهوائية أعلاة.

قيادة الطائرة
الطائرة مَرْكَبَة ميكانيكية تخضع للقوانين الميكانيكية. وعلى من يرغب في أن يصبح طيارًا ماهرًا، أن يتعرف على هذه القوانين بالإضافة إلى قوانين الديناميكا الهوائية. وعليه كذلك أن يحصل على التدريب واكتساب الخبرة اللازمة لقيادة الطائرة.

وتختلف قيادة الطائرة عن قيادة السيارة في كثير من الوجوه. فعند الرغبة في الدوران بالسيارة، يدير سائقها ببساطة عجلة القيادة في الاتجاه المطلوب. وللدوران بالطائرة، يجب على قائدها تشغيل العديد من أجهزة التحكم في وقت واحد.


الحركات الأساسية للطائرة وأجهزة التحكم فيها.

للطائرة ثلاث حركات أساسية، هي:
1ـ الخطران
2ـ العطوف
3ـ الانعراج.
والخطران حركة الطائرة بحيث تتحرك مقدمتها إلى أعلى أو إلى أسفل. وتنعطف الطائرة عندما ينخفض أحد جناحيها عن الآخر. والانعراج حركة الطائرة بحيث تنحرف مقدمتها لليمين أو اليسار. ويستخدم قائد الطائرة أجهزة التحكم لإحداث هذه الحركات أو لضبطها.

وللطائرة الكثير من أجهزة التحكم. لكن الأساسية منها أربعة، وهي:
1ـ الرافعة
2ـ الدفة
3ـ الجنيحات
4ـ ذراع الخنق.
والرافعة والدفة جزءان من مجموعة الذيل. أما الجنيحات فهي مثبتة في الأجنحة. وتصل مجموعة من الأسلاك والأذرع والبكرات بين أسطح التحكم الخارجية هذه، وبين أجهزة تحكم الطيار داخل القمرة. وتتحكم عجلة القيادة في حركة الجنيحات والرافعة، بينما تتحكم البدّالات بالدفة. ويستخدم الطيار ذراع الخنق للتحكم في سرعة المحرك وقدرته.

وتستخدم عجلة القيادة وبدالات الدفة لإحداث كل من الخطران والعطوف والانعراج. وتدفع عجلة القيادة للأمام والخلف، وتدور من جانب لجانب. ويتسبب دفع العجلة للأمام أوجذبها للخلف في تحريك الرافعة لأعلى أو لأسفل لإحداث الخطران. فعندما تُدفع عجلة القيادة للأمام تنخفض الرافعة، وتنخفض المقدمة تبعًا لذلك. أما إذا جذبت العجلة للخلف، فتتحرك الرافعة لأعلى وترتفع المقدمة. ومع تحريك عجلة القيادة من جانب لآخر ترتفع الجنيحات أو تنخفض لتسبب العطوف. فعندما تدفع العجلة إلى اليمين، يتحرك الجنيح الأيمن لأعلى والجنيح الأيسر لأسفل، وتنعطف الطائرة يمينًا. أما إذا دفعت العجلة إلى اليسار فإن الطائرة تنعطف يسارًا. ويستخدم الطيار بدالي الدفة لإحداث الانعراج. فبالضغط على البدال الأيسر، تتحرك الدفة إلى اليسار مسببة انحراف مقدمة الطائرة لليسار أيضا. أما الضغط على البدال الأيمن فيتسبب في انحراف مقدمة الطائرة لليمين.

ولدى الطيار، داخل القمرة، معدات للتحكم في حركة سطيحات تعديل الموازنة الخاصة بالجنيحات والرافعة والدفة.


وتعمل سطيحات تعديل الموازنة على المحافظة على اتزان الطائرة رغم أي تغير يحدث في سرعة الطائرة أو في موقع مركز ثقلها. ويتغير مركز ثقل الطائرة عدة مرات أثناء الطيران. فعلى سبيل المثال، يتغير موقع مركز الثقل بعد استهلاك وقود خزانات الأجنحة. ولمنع الطائرة من الطيران لأعلى، يتحكم الطيار في الرافعة بالضغط المستمر على عجلة القيادة. أما إذا ضبط الطيار سطيحات تعديل الموازنة فإنها تقوم آليًا بعمل الرافعة. ويسمح ضبط سطيح تعديل الموازنة، للطيار بالطيران حر اليدين، دون استخدام عجلة القيادة أو البدالات.


الاستخدام الصحيح لأجهزة التحكم.

لا يستخدم قائد الطائرة (القبطان) واحدًا فقط من أجهزة التحكم لإحداث أي من المناورات الجوية. فللدوران إلى اليسار ـ على سبيل المثال ـ لا يكفي أن يضغط الطيار ببساطة على البدال الأيسر، وإلا أدَّى ذلك إلى انزلاق الطائرة يسارًا. فلن يستكمل الدوران إذا بدأت الطائرة في الانزلاق، بل تعود إلى اتجاهها الأصلي فور رفع الطيار لقدمه عن البدالة.

ولإحداث دوران صحيح إلى اليسار أثناء الطيران المستوي، لابد للطيار من أن يستخدم أربعة أجهزة تحكم في آنٍ واحد.


فيجب عليه:
1ـ الضغط لأسفل على البدال الأيسر لتتجه الطائرة لليسار
2ـ دفع عجلة القيادة لليسار ليرتفع الجنيح الأيسر لإحداث ميل جانبي لليسار
3ـ جذب عجلة القيادة للخلف لرفع الرافعة إلى أعلى ومن ثمَّ رفع مقدمة الطائرة وزيادة زاوية الهبوب.
4ـ دفع ذراع الخنق للأمام لزيادة القدرة المولدة من المحرك. ويؤدي الطيار كل هذه الخطوات في وقت واحد.
وبهذا فإن الطيار يستخدم الدفة والجنيحات معًا لإحداث الالتفاف، لكن الطائرة تفقد بعض الرفع عند بدء الالتفاف. ولتعويض هذا الفقد يرفع الطيار الرافعة لزيادة زاوية الهبوب. ويترتب على زيادة زاوية الهبوب زيادة في قوة السحب الهوائي ويصبح مطلوبًا قوة دفع أكبر، وللحصول عليها يدفع الطيار ذراع الخنق لزيادة قدرة المحرك. وفي جميع المناورات الجوية الأخرى ـ من الإقلاع حتى الهبوط ـ لابد للطيار من المحافظة على التوازن العام للقوى المؤثرة، كما هو بالنسبة للدوران. فبالاستخدام المتزامن لكافة أجهزة التحكم يستطيع الطيار أن يضمن توازن قوة الرفع مع قوة الجاذبية، وقوة الدفع مع قوة السحب الهوائي.


السقوط.

يحدث عندما تصبح زاوية هبوب الجناح كبيرة لدرجة تفقد فيها الطائرة الكثير من قوة الرفع وتبدأ في السقوط. وتؤدي الزيادة البسيطة لزاوية الهبوب، كما سبق أن أوضحنا، إلى زيادة قوة الرفع. لكن، إذا وضع الطيار مقدمة الطائرة لأعلى حتى يصنع جناحها زاوية تزيد على ما بين 15° و20° مع اتجاه الطيران، يبدأ الهواء المار فوق الجناح في الاضطراب بعنف. ونتيجة لذلك تفقد الطائرة قدرًا من قوة الرفع، وإذا لم يبادر الطيار باستعادة الرفع المفقود، يصبح من غير الممكن التحكم في الطائرة، وتسقط حتى تصطدم بالأرض وتتحطم.



ويستطيع الطيار الخروج بطائرته من السقوط، بوضع مقدمتها لأسفل، ثم تركها لتأثير الجاذبية لتتزايد سرعتها، ومن ثم تتزايد قوة الرفع. ويستطيع الطيار كذلك زيادة قدرة المحركات ليكتسب زيادة في قوة الرفع نتيجة لزيادة قوة دفع المحركات.

طيران العدادات.
يستطيع الطيار الماهر أداء المناورات الجوية والهبوط بالطائرة إذا لم يكن قادرًا على رؤية ما حوله، معتمدًا فقط على قراءة العدادات. وتزيد أهمية هذه المهارة في الطيران خلال السُّحب أو الضباب أو الأمطار الغزيرة. فعندما لا يتمكن الطيار من رؤية خط الأفق أو رؤية الأرض تحته، يصبح من العسير التأكد من سير الطائرة في خطها المرسوم، والتأكد من أنها لا تفقد أو تكسب ارتفاعًا. وتوفر العدادات هذه المعلومات، بل إنها تساعد الطيار أيضًا على مختلف المناورات الجوية دون فقٍد في الارتفاع أو السرعة، كما تساعده على الهبوط فوق الأرض بأمان.

قياس سرعة الطيران.
تقاس سرعة الطائرة في أثناء الطيران بطرق متعددة. والسرعة الهوائية المبينة، هي السرعة التي يقرؤها الطيار على عداد يسمى مبين السرعة الهوائية لكن قراءة مبين السرعة الهوائية تتأثر بالتغيرات التي تحدث في ضغط الهواء ودرجة حرارته عند مختلف الارتفاعات. لذلك فإن السرعة الهوائية المبينة تختلف عن السرعة الهوائية الحقيقية وكذلك عن السرعة الأرضية. وتعرف السرعة الهوائية الحقيقية بأنها سرعة الطائرة بالنسبة للهواء. أما السرعة الأرضية فهي سرعة الطائرة بالنسبة لسطح الأرض. ويستطيع الطيار حساب السرعة الهوائية الحقيقية عن طريق قراءة السرعة الهوائية المبينة مع إضافة 2% زيادة لكل 300م ارتفاع. فمثلاً، إذا طارت طائرة على ارتفاع قدره 3,000م، وكانت قراءة مبين السرعة الهوائية 100كم/ساعة، تكون السرعة الهوائية الحقيقية حوالي 120كم/ساعة. ويستطيع الطيار استخدام السرعة الهوائية الحقيقية لحساب السرعة الأرضية إذا توفرت لديه المعلومات عن سرعة الريح واتجاهها. فإذا كانت السرعة الهوائية الحقيقية للطائرة هي 120كم/ساعة، وكانت الريح قادمة من الأمام بسرعة قدرها 30كم/ساعة، فإن السرعة الأرضية للطائرة تكون 90كم/ ساعة.

السرعة القصوى.
هي أعلى سرعة يمكن أن تصل إليها الطائرة في أثناء طيران مستو. أما أفضل سرعة صعود فهي أقصى سرعة يمكن الصعود عندها. وسرعة الطيران المطرد، هي السرعة الأكثر ملاءمة للطيران لمسافات طويلة. وسرعة المناورة هي أعلى سرعة يمكن بها للطائرة أداء المناورات دون إحداث أضرار بالطائرة. ولكل طائرة أيضًا سرعة العلامة الصفراء، وسرعة العلامة الحمراء، وتظهران على مبين السرعة الهوائية. والمنطقة المميزة باللون الأصفر هي منطقة تحذير حيث يجب على الطيار عدم أداء أي مناورات جوية مفاجئة عند طيرانه ضمن هذه المنطقة. أما المنطقة المميزة باللون الأحمر فهي تبين أعلى سرعة يمكن للطائرة أن تطير عندها بسلام في جميع الظروف.

الغراب الأسود 20 - 11 - 2010 02:35 AM

ولكل طائرة سرعة هويان (انهيار) وهي السرعة التي تفقد الطائرة عندها قوة الرفع. وتوضح شركات تصنيع الطائرات سرعة الانهيار لكل طائرة تقوم بإنتاجها وبيعها. لكن سرعة الانهيار المبينة تنطبق فقط على حالة مستوى الطيران. أما في أثناء الدوران، فتكون سرعة الانهيار أعلى منها أثناء مستوى الطيران. وللخروج من حالة الانهيار أثناء هذا المستوى يدفع الطيار عجلة القيادة للأمام، ويرفع من قدرة المحرك لاكتساب المزيد من قوة الرفع.

تعلُّم الطيران.
يحتاج الطيران إلى قدر كبير من المعرفة المتخصصة، لذلك يحصل كثير من الطلبة الطيارين على دروس أساسية بالإضافة إلى دروس الطيران. وتتضمن الدروس الأساسية مواد: الديناميكا الهوائية، والأرصاد الجوية (دراسة الجو)، والملاحة الجوية، وقوانين الطيران. ولا بد للطلبة الطيارين من اكتساب معرفة جيدة بكل هذه الموضوعات لاجتياز الامتحانات.

وتشمل دروس الطيران 40 ساعة طيران أو أكثر. نصف هذا الوقت يكون طيرانًا ثنائيًا، حيث يصاحب الطالب في الطائرة معلمٌ يشارك في قيادتها، عن طريق جهاز تحكم مزدوج. ويكون الطيران منفردًا في باقي الدروس حيث يطير الطالب الطيار بمفرده في الطائرة. ولابد من أن يكتسب الطالب مهارة في عمليات السير بالطائرة على الأرض، والإقلاع وإجراء المناورات الجوية المختلفة والملاحة الجوية والهبوط والحط على الأرض. ويجب أن يستكمل الطالب نصف وقت الطيران المنفرد عبر البلاد، تكون من بينها رحلة واحدة على الأقل يتم الهبوط في نهايتها في مهبط آخر غير مطاره الأصلي. وقبل كل رحلة عبر البلاد يختبر الطالب حالة الجو، ويقوم بتوقيع مسار الرحلة على نوع خاص من الخرائط يسمى لوحة الملاحة الجوية. كذلك يقوم بالكشف الدقيق على الطائرة قبل الإقلاع.

ولابد من أن يكون الطالب قادرًا على الطيران بالعدادات فقط، وأيضًا عن طريق ملاحظة الملامح الأرضية. وبعد الهبوط والحط على الأرض، يقوم الطالب بتسجيل زمن الرحلة في سجل الطائرة.

وتشترط معظم الدول على المتقدم للحصول على شهادة طيران ـ ما لم يكن قد تدرب على الطيران الحربي ـ أن يحصل على دورة تدريبية معترف بها من قبل الهيئة القومية المسؤولة، والتي تصدر هذه الشهادات للمتقدمين من ذوي الكفاءة المناسبة دون غيرهم.

الملاحة الجوية
الملاحة الجوية هي الوسيلة التي يصل بها الطيار إلى محطته الأخيرة، والتي يحدد بها موقعه في أي وقت. وتزوَّد الطائرات ببوصلة وبعض الأجهزة الأخرى التي تساعد الطيار على الملاحة بدقة. وتحتوي الكثير من طائرات الخطوط الجوية، وغيرها من الطائرات الكبيرة، على حاسوب يساعد في أعمال الملاحة أثناء الرحلات الجوية الطويلة.

ومن بين أهم المساعدات الملاحية الجوية: خريطة الطيران، وهي تشبه خرائط الطرق لكنها تحتوي على معلومات أكثر، فمثلاً، تبين خريطة الطيران مختلف علامات الطرق، ومسارات الخطوط الجوية، وأماكن الهبوط، ومحطات الراديو التي تبث الإشارات الملاحية للطائرة. وتستخدم حاليا بكثرة، خريطة قواعد الطيران بأجهزة البيان، وهي نوع خاص من خرائط الطيران تبين فقط مواقع وذبذبات محطات الراديو.

وهناك ثلاث طرق رئيسية للملاحة الجوية: 1ـ القيادة الحرة 2ـ تقدير الموضع 3ـ الملاحة بالراديو. ويجمع معظم الطيارين بين هذه الطرق الثلاث.

القيادة الحرة.
هي أبسط وأكثر طرق الملاحة الجوية استخدامًا. وباستخدام هذه الوسيلة، يحافظ الطيار على خط سيره بتتبع سلسلة من العلامات الأرضية. ويقوم الطيار قبل الإقلاع برسم خط على الخريطة الطيرانية المناسبة، يمثل خط السير المطلوب. ويلاحظ الطيار العلامات الأرضية التي سيمر بها أثناء رحلته مثل: الجسور والطرق وخطوط السكك الحديدية والأنهار والمدن. وكلما مرت الطائرة في أثناء الرحلة فوق واحدة من هذه العلامات، يضع الطيار علامة بذلك على الخريطة. فإذا اكتشف الطيار أنه لم يعبر بدقة فوق العلامة الأرضية، فإن ذلك يعني ضرورة تعديل مسار الطائرة.

تقدير الموضع.
تستخدم هذه الطريقة للملاحة الجوية عندما لا تكون هناك علامات أرضية مرئية. وتحتاج طريقة تقدير الموضع إلى مهارة وخبرة أكثر من تلك المطلوبة للملاحة بطريقة القيادة الحرة. ويلجأ الطيار إلى أسلوب الملاحة بتقدير الموضع عند الطيران فوق مساحات مائية واسعة، أو غابات، أو مناطق صحراوية أو وسط طبقات من السحب الكثيفة. ويحتاج الطيار، بالإضافة إلى خريطة الطيران، إلى ساعة توقيت دقيقة، وبوصلة وحاسوب صغير لإجراء العمليات الحسابية المعقدة. ويقوم الطيار مسبقا بتوقيع خط السير على الخريطة. ثم يقوم بحساب الوقت اللازم للوصول إلى نهاية المسار إذا ما طار بسرعة منتظمة. وباستخدام الحاسوب يقوم الطيار بتصحيح المسار بعد أخذ تأثير الرياح في الحسبان.

وأثناء الطيران في الجو، يراقب الطيار البوصلة للمحافظة على الطائرة في وجهتها الصحيحة. وتكون الطائرة قد وصلت إلى نهاية المسار عندما ينقضي الوقت المحسوب. ولا تنجح الملاحة الجوية بطريقة تقدير الموضع في كل الحالات، حيث يتسبب تغير الريح في عدم المحافظة الدائمة على الطائرة في وجهتها الصحيحة.

الملاحة بالراديو.
يستخدمها الطيارون في معظم الأحوال. ترسل محطات الراديو ذات الترددات العالية جدا، إشارات تستقبلها الطائرة. وتزود معظم الطائرات الحديثة بالأجهزة التي تستعمل هذه الإشارات.

ويجد الطيار محطة الراديو التي يجب أن يضبط عليها جهازه في كل منطقة، مبينة على خريطة الطيران، وعندما يقوم الطيار بضبط جهازه على المحطة الأرضية الصحيحة، ترشده إبرة موجودة بجهاز الملاحة إلى أنه يطير في الاتجاه الصحيح أو خارجه. كذلك تبين هذه الإبرة لحظة انحراف الطائرة عن المسار الصحيح، ليقوم الطيار بإعادة تصحيح المسار. وهذا النظام ـ والذي صمم أصلا للطائرات المدنية، أو غير العسكرية ـ يسمى راديو التردد العالي جدًا شامل المدى.

وتستخدم طائرات السفر الجوي، وكثير غيرها من الطائرات، جهازا خاصًا مع محطات التردد العالي جدًا شامل المدى يسمى جهاز قياس المسافة. ويسمى النظام في هذه الحالة: محطة التردد العالي جدًا شامل المدى المزود بجهاز قياس المسافة. كذلك تستخدم الطائرات العسكرية جهازًا مماثلاً يسمى جهاز الملاحة الجوية التكتيكي. وقد جرى الجمع بين النظامين في نظام واحد تستخدمه الطائرات المدنية والعسكرية على السواء، وتستفيد بعض الطائرات بالإشارات الصادرة من محطة التردد العالي جدًا شاملة المدى، لتغذية جهاز الطيران الآلي.

طرق أخرى للملاحة الجوية.
يطلب من طياري طائرات السفر الجوي في الغالب العمل طول الوقت بقواعد الطيران باستخدام أجهزة البيان. أثناء ذلك يكون لدى الطيار مساعدات ملاحية مختلفة تساعده على الإقلاع والطيران والهبوط والحط على الأرض بأمان. ومن بين أهم هذه المساعدات، مجموعة من مراكز المراقبة الجوية لمسار الطائرات. وتزود هذه المراكز بأجهزة رادار لتتأكد من أن جميع الطائرات في دائرتها، تطير في مسارها الجوي المحدد. كذلك تزود طائرات السفر الجوي بجهاز رادار خاص للاستقبال والإرسال يسمى جهاز التعارف. ويستقبل هذا الجهاز الإشارة على الأرض، تظهر الطائرة أكثر وضوحًا على شاشة الرادار.

ولكثير من المطارات أبراج للمراقبة، ويعمل في برج المراقبة مراقبون جويون حاصلون على تدريب خاص يقومون بتوجيه الطائرات الهابطة أو المقلعة، مستخدمين أجهزة اتصال راديو ورادار. وتزود معظم المطارات العاملة في النشاط التجاري بأجهزة الهبوط الآلي لمساعدة طياري طائرات السفر الجوي على الهبوط والهبوط الآمن. ويبث هذا النظام مجموعة من الأحزمة الراديوية منبعثة من الأرض لتشغيل أجهزة خاصة في قمرة قيادة طائرة السفر الجوي. وبمراقبة الطيار لهذه الأجهزة يمكن التأكد من موقعه الدقيق بالنسبة للممر، ومن ثم الهبوط والحط الآمن على الأرض.

وللطيارين طرق خاصة للملاحة عبر المحيطات. والطريقتان الأكثر استخدامًا هما: 1ـ توجيه القصور الذاتي 2ـ الملاحة الجوية بعيدة المدى (لوران). ويتوفر للطائرات التي تستخدم توجيه القصور الذاتي، حاسوب وأجهزة خاصة أخرى لتنبيه الطيار عندما يستكمل قطع المسافة المخطط لها ضمن الرحلة الجوية. أما الطائرات التي تستخدم الملاحة الجوية بعيدة المدى، فلديها أجهزة تستقبل إشارات راديو خاصة ترسل باستمرار من محطات بث أرضية. وتبين هذه الإشارات الموقع الدقيق للطائرة.

التوجيه بالقصور الذاتي
وسيلة للملاحة تُستخدم لتوجيه الصواريخ والطائرات والغواصات وغيرها من المركبات. وعلى العكس من وسائل الملاحة الأخرى، فإن التوجيه بالقصور الذاتي لا يعتمد على المراقبة من الأرض أو النجوم، أو على إشارات الراديو والرادار، أو أية معلومات أخرى تأتي من خارج المركبة. وعوضًا عن ذلك، فإن هنالك جهازًا يسمَّى ملاّح القصور الذاتي يوفر معلومات التوجيه. ويتكون هذا الجهاز من جيروسكوبات (عجلات علوية دوّارة) تحدد الاتجاه، ومقاييس التسارع (أجهزة تقيس التغيّيرات في السرعة والاتجاه). ويستخدم حاسوب إلكتروني هذه المعلومات ليحدد موقع المركبة ويوجهها.

ميزات التوجيه بالقصور الذاتي.
يمكن أن نوضح هذه الميزات بمثال رحلة الطائرة. فالطائرة، لكي تصل إلى وجهتها، يجب أن: 1ـ تطير في الاتجاه السليم و2ـ تقطع المسافة الصحيحة. ومن دون التوجيه بالقصور الذاتي، فإن على الطيار أن يعتمد على البوصلة أو إشارات الراديو التي تصل إليه من مواقع معروفة على الأرض ليتأكد من أن الطائرة تطير في الاتجاه السليم. ولدى الطيارين العديد من السبل لتحديد المسافة التي قطعتها الطائرة. فهم يستطيعون النظر إلى المعالم الأرضية، والتحقق من مواقع النجوم، وقياس الإشارات التي تصل إليهم من منارات الراديو أو ضرب سرعة الطائرة في الوقت الذي استغرقته في الطيران. أما في حال استخدام التوجيه بالقصور الذاتي، فإن كل ما يحتاجه الطيار هو النظر إلى معداته الملاحية داخل طائرته. وبهذه الطريقة يستطيع الطيارون تبيُّن طريقهم برغم ضعف الرؤية، أو تعطُّل أجهزة الاتصال، وغياب المعالم الأرضية. وفي أوقات الحرب، لا يستطيع الأعداء التشويش على أنظمة التوجيه بالقصور الذاتي بالمعلومات المزيفة أو المربكة.

كيف يعمل التوجيه بالقصور الذاتي.
يقيس ملاّح القصور الذاتي التغييرات التي تطرأ على حركة المركبة أوتوماتيًا، ويرسل المعلومات إلى الحاسوب. بعد ذلك يحسب الحاسوب آثار كل التغييّرات، ويتابع المدى الذي وصلت إليه الطائرة والاتجاه الذي تحركت نحوه ابتداءً من نقطة انطلاقها.
وتدور ثلاثة جيروسكوبات داخل ملاّح القصور الذاتي في الاتجاهات المختلفة على محاور. وتوضع المحاور بحيث تكون على زوايا مقدار كل واحدة منها 90 درجة بالنسبة لبعضها بعضًا، وتشبه ثلاثة أطراف لصندوق تجتمع في أحد أركانه. وتحافظ المحاور على اتجاهاتها طالما تُواصل الجيروسكوبات دورانها السريع. ويُدعَّم كل جيروسكوب بمجموعة من المرتكزات التي تبقي الآلة في وضع أفقي (إطارات للتحرك) وذلك حتى تبقى على موقعها عندما تتمايل الطائرة، أو تنحدر، أو تدور. وتعمل الجيروسكوبات مع بعضها لتكون نظام مرجعية يعمل بالقصور الذاتي (مجموعة من الخطوط الثابتة). وتكتشف أجهزة قياس التسارع التغييرات التي تحدث في حركة الطائرة مقارنة بخطوط الجيروسكوب.
ويقيس جهاز الملاحة الذي يعمل بالقصور الذاتي المسافة التي قطعتها المركبة بتسجيل التغييرات التي تطرأ على الخط العمودي. ويشير هذا الخط إلى الجهة الواقعة في اتجاه مركز الأرض. وتشير الزاوية بين الخطوط إلى المسافة بين النقطتين. وكل دقيقة (واحد من ستين من الدرجة) من الزاوية تشير إلى مسافة سطحية تبلغ ميلاً بحريًا واحدًا (1,852م). ويبلغ طول المسافة من مدينة نيويورك إلى لندن 3,600 أميال بحرية (50°و6 دقائق).

نبذة تاريخية.
عُرفت مبادئ التوجيه بالقصور الذاتي منذ أوائل القرن العشرين عندما فُهمت طريقة عمل الجيروسكوبات لأول مرة. واستخدمت الجيروسكوبات منذ ذلك التاريخ بوصفها بوصلات على متن السفن. ويمكن ضبطها بصورة مستمرة على اتجاه واحد كالاتجاه نحو القطب الشمالي على سبيل المثال. وعلى العكس من البوصلات المغنطيسية، فإن البوصلة الدوارة تشير على الدوام إلى الشمال الحقيقي ولا تتأثر بالفولاذ.

وفي عام 1923م، وصف المهندس الألماني ماكس شولر طريقة لرسم خط عمودي لا يميل عندما تغير المركبة سرعتها أو اتجاهها. وإذا مال الخط، فإنه لا يمكن استخدامه لقياس المسافة. وكانت طريقة شولر صحيحة من الناحية النظرية. ولكن لم يكن بالإمكان التخلص من الميلان بأجهزة آلية متوافرة في ذلك الوقت. أما اليوم، فإن نظرية شولر تُستخدم في بناء الأنظمة الإلكترونية التي تحول دون ميلان الخط العمودي.

وأثناء الحرب العالمية الثانية (1939-1945م)، اخترع الألمان نظاماً للتوجيه بالقصور الذاتي وجه صواريخهم من طراز (V-2) ضد إنجلترا. وفي أواخر الأربعينيات وأوائل الخمسينيات من القرن العشرين اخترع تشارلز. دريبر وغيره من العلماء في معهد ماساشوسيتس للتكنولوجيا في الولايات المتحدة الأمريكية أول أنظمة توجيه بالقصور الذاتي اتسمت بالدقة الشديدة. وفي عام 1953م، قام دريبر بأول رحلة طيران عبر القارات مستخدمًا جهازًا للتوجيه يعمل بالقصور الذاتي. وفي عام 1958م، استخدمت الغواصتان الأمريكيتان نوتيلوس وسكيت جهازي ملاحة يعملان بالقصور الذاتي لتوجيههما تحت جليد القطب الشمالي. ومنذ أوائل الستينيات من القرن العشرين زُود الكثير من الغواصات بصواريخ مجهزة بموجِّهات تعمل بالقصور الذاتي. وكانت المركبات الفضائية من طراز أبولّو، التي صممت لتحمل الإنسان إلى القمر، مزودة أيضًا بأجهزة ملاحة تعمل بالقصور الذاتي.

الملاحة البعيدة المدى
وتُسمّى أيضًا اللوران، وهي نظام ملاحي راديوي يساعد السفن والطائرات على تحديد مواقعها. وترسل محطتان أو أكثر تعرفان باسم المحطة الرئيسية والمحطة التابعة الإشارات الراديوية باستمرار، وتستقبل السفينة أوالطائرة هذه الإشارات من خلال أجهزة خاصة. وتقوم هذه الأجهزة بقياس الفترة الزمنية بين النبضات التي تلتقطها من المحطات. ويحدد الفرق في الزمن بين الإشارات التي تلتقطها من محطتين، موقع السفينة أو الطائرة فوق نقطة ما على خط الموقع اللوراني فوق الخريطة. وتوضع علامة على الخريطة لتحديد موقع السفينة أو الطائرة طبقاً للفرق في الزمن بين الإشارات المرسلة من المحطتين.
وفي معظم الحالات، نجد محطة راديوية رئيسية واحدة يقابلها محطة راديوية تابعة من إحدى محطتي التوابع، حيث يسمح هذا الترتيب للملاح أن يقطع خطي موقع لوراني، ليحدد موقع سفينة أو طائرة وبذلك يحسِّن بدرجة كبيرة من دقة نظام الملاحة.
ويستخدم الملاحون نظامًا راديويًا يُعرف باسم لوران ـ سي يستطيع أن يرسل إشارات تقطع 1,600كم أثناء النهار. وفي بعض الظروف، يصل مداها إلى أكثر من 4,800كم أثناء الليل عندما تنتقل موجات الراديو منخفضة التردد إلى مسافات أبعد، وبذلك يمكن تحديد أي موقع داخل مدى حوالي نصف كيلومتر.

بناء الطائرة
توضع مواصفات تصميم وتصنيع الطائرات بوساطة هيئات مثل: هيئة الطيران المدني البريطانية، وإدارة الطيران الفيدرالية بالولايات المتحدة. ولابد من أن تحصل كل طائرة جديدة قبل بيعها للمستعمل على شهادة تبين تحقيقها للمواصفات المطلوبة في التصميم واختبار المواد والتصنيع والإنشاء والأداء. وتنطبق قواعد شبيهة كذلك على طائرات التصنيع المنزلي.

التصميم والاختبار.
يبدأ المصممون والمهندسون في التخطيط وإجراء الاختبارات لأي طائرة جديدة، قبل فترة طويلة من بدء إنتاجها بالجملة. وتحتاج طائرة السفر الجوي لتخطيط من 8 إلى 10 سنوات على الأقل، وتصميم الطائرة يعتمد كثيرًا على كيفية استخدامها. فلابد لطائرة النقل من أن تكون قادرة على حمل شحنات ثقيلة لمسافات طويلة، واستهلاك أقل وقود ممكن. أما الطائرات الخفيفة فلابد من أن تكون قادرة على سهولة المناورة والهبوط والحط على الأرض فوق ممر قصير. ولابد من أن يكون لجميع الطائرات جناحٌ يمكنه توليد قوة رفع عالية عند السرعات المخفضة، ويتعرض لقوة سحب هوائي صغيرة عند السرعات العالية. أما الطائرة المقاتلة التابعة للقوات الجوية، فلابد من أن تكون قادرة على الطيران بسرعات عالية ـ هي غالبا ضعف أو ثلاثة أضعاف سرعة الصوت ـ وكذلك قادرة على العمل عند جميع الارتفاعات، العالية جدًا والمنخفضة جدًا.
ويقوم المهندسون بعناية باختبار المعادن واللدائن والأخشاب والمواد الأخرى المستخدمة في تصنيع الطائرة. فلابد لهذه المواد من أن تتحمل ضغوط هواء هائلة وظروفًا جوية عاتية. فالأجنحة ـ على سبيل المثال ـ لابد من أن تتحمل ما بين أربعة أضعاف قوة الجاذبية وستة أضعاف. وقد يستخدم المهندسون الأنفاق الهوائية لاختبار أثر الهواء المار حول الطائرة عند مختلف السرعات والارتفاعات.

النفق الهوائي
مرفق اختبار أرضي القاعدة، يُستخدم لدراسة تأثيرات الريح، أو انسياب الهواء، على الطائرات، والمركبات والبِنيات الأخرى. وتُشَيَّد الأنفاق الهوائية بأشكال كثيرة، ولأغراض مختلفة؛ فبعضها كبير الحجم للغاية بحيث يختبر طائرة تجريبية بحجمها الطبيعي، إلا أن معظم الأنفاق الهوائية تختبر طرزًا مصغرة الأحجام.
يوجد في معظم الأنفاق الهوائية جزء طويل يسمى قسم الاختبار، يُنفخ عبرَه تيارٌ من الهواء على جسم ما بسرعة منتظمة. وفي الإمكان التحكم في ضغط الهواء ودرجة الحرارة أيضًا. ويُنفخ الهواء عمومًا بوساطة مراوح كهربائية، بَيْدَ أنه يمكن استخدام وسائل أخرى، مثل أوعية الهواء المضغوط. كما تقوم فوهة كبيرة أمام قسم الاختبار بتسريع الهواء إلى السرعة المطلوبة. وبعد مرور الريح عبر قسم الاختبار، تقوم قناة تُسمَّى الناشرة؛ بإبطاء انسياب الهواء. ويتم تثبيت المركبة أو البنية الخاضعة للاختبار، بدعامات تمتد من الأرض، أو من وراء الجسم. كما أن الدعامات مربوطة بأجهزة قياس، خارج قسم الاختبار، تسجل مدة شدة انسياب الهواء على المركبة أو البنية. وتستطيع تلك الأجهزة أيضًا، قياس الضغط السطحي في أماكن كثيرة من الجسم.
تُسَمَّى الأنفاق الهوائية ذات سرعة الهواء القريبة من سرعة الصوت، أي حوالى 1,225 كم/ساعة الأنفاق حول الصوتية أما في الأنفاق الهوائية دون سرعة الصوت، فإن الهواء ينتقل بسرعة أقل من سرعة الصوت. والأنفاق الهوائية التي ينتقل فيها الهواء بسرعة أكبر من سرعة الصوت، تسمى الأنفاق فوق الصوتية؛ بينما في الأنفاق فرط الصوتية، تفوق سرعة الهواء خمسة أضعاف سرعة الصوت.
بالإمكان نفخ الهواء أو الغازات الأخرى العالية الضغط عبر الأنفاق الهوائية لتُماثل مختلف أحوال الطيران. ويمكن في بعض الأنفاق الهوائية، تحقيق درجات حرارة عالية أو منخفضة جدًّا؛ مما يمكن الخبراء من دراسة موضوعات مثل تثليج الطائرة، وأداء السيارة في المناخات القطبية أو المدارية.


لكن الكثير من تصميمات الطائرات أصبحت حاليًا تختبر باستخدام الحاسوب بدلاً من الأنفاق الهوائية. وبجانب هذه الاختبارات، يقوم المهندسون ببناء نماذج بالحجم الطبيعي لطائرة ـ من الخشب والمعدن ـ مشتملة غالبًا على كافة التفصيلات الدقيقة لاختبار الترتيب الداخلي للمقاعد والمعدات.

وبعد سنوات من التخطيط والبحوث، يبدأ المهندسون بناء نموذج أوَّلي للطائرة. وتجرى على هذا النموذج اختبارات دقيقة على الأرض، وتدار المحركات على سرعات دوران عالية، وتتحرك الطائرة على الأرض بأسرع ما تستطيع. وعادة ما يقوم المهندسون ببناء أكثر من نموذج أوَّلي واحد لاختبار البلى الذي تتعرض له الطائرة بعد طول الاستخدام، ولاختبار أداء الأنظمة المختلفة. ويتم تشغيل المحرك والأجزاء المتحركة في الطائرة حتى انهيارها. ثم تبدأ الشركة المصنعة في إجراء الاختبارات الجوية على طائرة تجريبية. ولا بد حينئذٍ من قيام الهيئة الحكومية المسؤولة ـ إدارة الطيران الفيدرالي للولايات المتحدة على سبيل المثال ـ بمراجعة عناصر تصميم الطائرة كافة وإنشائها واختبارها. فإذا تبين تحقيق الطائرة لجميع المواصفات، تُمنح الشركة المنتجة، شهادة طراز، تسمح ببيع الطائرة وبدء التشغيل العام لها.

الإنتاج بالجملة.
يقوم بإنتاج الطائرات عدد قليل من الشركات في قليل من الدول. لكن آلاف المصانع تقوم بتوريد الأجزاء اللازمة لتجميع الطائرة لمصانع الطائرات. ويتخصص بعض الموردين في إنتاج أجزاءٍ معينة من الطائرة مثل جهاز الهبوط أو العدادات. بينما تتولى شركات أخرى تصنيع الأجزاء الكبيرة للطائرة بما فيها الأجنحة والهيكل والذيل.

ويعمل خط تجميع الطائرات بطريقة تماثل كثيرًا عمل خط تجميع السيارات، حيث يقف العمال على جانبي خط التجميع والإنتاج. وتشمل خطوط التجميع النهائية خطوط تجميع فرعية يتم فيها تجميع الأجزاء الرئيسية للطائرة، مثل الهيكل والأجنحة، قبل إرسالها إلى خط التجميع النهائي. وفي المشروعات الكبيرة المتعددة الجنسيات، مثل مشروع الطائرة إيرباص الأوروبية، يتم تصنيع الأجنحة في إحدى الدول، والهيكل في دولة أخرى، والمحركات في دولة ثالثة. ويتم جمع الأجزاء المصنعة في مصنع واحد للتجميع النهائي.

وبعد الانتهاء من تركيب جميع أجزاء الطائرة، يتم دفعها خارج خط التجميع. ثم يجرى تفتيش كامل لكل طائرة جديدة، كما يقوم طيار اختبار بتجربة الطائرة في الجو للتأكد من أن المحركات وأجهزة القيادة في حالة تشغيل طيبة. وبعد اجتياز الطائرة لهذه الاختبارات النهائية تكون جاهزة ليتسلمها المشتري.


المصدر :

http://www.mawsoah.net/theme0/images/water_logo.gif
الموسوعة العربية العالمية

B-happy 20 - 11 - 2010 01:13 PM

الغراب الآسود
شكرا لك على هذه المعلموات القيمة
موضوع يستحق الشكر والتقدير
جهودك رائعه
بارك الله فيك

سنابل 20 - 11 - 2010 01:22 PM



الساعة الآن 07:08 PM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd. منتديات المُنى والأرب

جميع المشاركات المكتوبة تعبّر عن وجهة نظر كاتبها ... ولا تعبّر عن وجهة نظر إدارة المنتدى